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Abstract

Response modeling is concerned with identifying potential customers who are likely to purchase a promoted product, based on customers'
demographic and behavioral data. Constructing a response model requires a preliminary campaign result database. Customers who responded to
the campaign are labeled as respondents while those who did not are labeled as non-respondents. Those customers who were not chosen for the
preliminary campaign do not have labels, and thus are called unlabeled. Then, using only those labeled customer data, a classification model is
built in the supervised learning framework to predict all existing customers. However, often in response modeling, only a small part of customers
are labeled, and thus available for model building, while a large number of unlabeled data may give valuable information. As a method to exploit
the unlabeled data, we introduce semi-supervised learning to the interactive marketing community. A case study on the CoIL Challenge 2000 and
the Direct Marketing Educational Foundation data sets shows that the transductive support vector machine, one of widely used semi-supervised
models, can identify more respondents than conventional supervised models, especially when a small number of data are labeled. Semi-supervised
learning is a viable alternative and merits further investigation.
© 2009 Direct Marketing Educational Foundation, Inc. Published by Elsevier Inc. All rights reserved.
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Introduction

Response modeling has been an effective strategy for
customer relationship management (CRM) campaigns. Its aim
is to construct a scoring model that predicts whether or not each
customer will respond to a given mailing campaign (Deichmann
et al. 2002; Ha, Cho, and MacLachlan 2005; Levin and Zahavi
2001; Zahavi and Levin 1997a). Based on the model, marketers
give promotions or offers to customers who are predicted to
respond. A well-targeted mailing campaign will increase
revenue while a mistargeted or unwanted mailing will not
only increase the marketing cost without adding any value but
also may worsen the customers' relationship with the firm
(Gönül, Kim, and Shi 2000).

A typical modeling procedure can be outlined as follows
(Zahavi and Levin 1997a,b). First, a preliminary campaign is
launched to a small subset of customers and the responses are
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observed. We then assign class labels to the customers, that is,
respondents to those who responded and non-respondents to
those who did not. Customers who have not been targeted in the
preliminary campaign, on the other hand, do not have class
labels, and thus are called unlabeled. Second, using those
labeled customer data with the known class labels, a prediction
model is built to classify the customers into respondents and
non-respondents. Note that unlabeled customer data are not
directly involved in model building. Finally, for each customer,
a score is estimated as to whether he or she will respond to a
future campaign. An actual mailing campaign is targeted to a
subset of customers with high scores. In the machine learning
literature, this type of approach is called supervised learning1 in
the sense that modeling is guided by the class labels. A model
constructed by supervised learning can exploit information only
The term, “learning,” stems from the analogy that a model is constructed by
observing data. Although it is often used in the machine learning literature
essentially interchangeably with “model building” we will refrain from using it
throughout this paper except for established terminology.
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from those labeled customers who have been targeted in the
preliminary campaign.

Some researchers view this as a suboptimal use of available
data since we have the unlabeled customer data as well, which
may also give valuable information for building a prediction
model. Recently, the so-called semi-supervised learning frame-
work has been proposed to exploit unlabeled data in a principled
manner (Chapelle, Schölkopf, and Zien 2009; Seeger 2000; Zhu
2005). It has been proposed to deal with situations where labeled
data are difficult to collect while unlabeled data are readily
available or relatively easy to collect. Previous research has
shown that semi-supervised learning using unlabeled data can
improve upon typical supervised learning in terms of classifi-
cation accuracy (Chapelle, Schölkopf, and Zien 2009; Chawla
and Karakoulas 2005).We believe that semi-supervised learning
is well-suited for response modeling tasks where there is a small
amount of labeled data but a large amount of unlabeled data.
This is the case when, for example, a direct marketer is testing a
new list of customers. However, to the best of our knowledge, no
research has been reported that attempts to apply semi-
supervised learning to response modeling.

The goal of this paper is to introduce semi-supervised
learning to the interactive marketing community. We present a
method applicable to response modeling: transductive support
vector machines (TSVMs)2 (Joachims 1999; Sindhwani and
Keerthi 2007), a semi-supervised extension of the supervised
support vector machines (SVMs) (Cristianini and Shawe-Taylor
2000). A case study is conducted on two well-known data sets:
the CoIL Challenge 2000 data set (CoIL2000) (van der Putten
and van Someren 2000) and the Direct Marketing Educational
Foundation data set 4 (DMEF4). The results show that the
TSVM outperforms supervised models when there is a small
amount of labeled data.

This paper is organized as follows. In the next section, semi-
supervised learning is introduced and discussed in the light of
response modeling. The Response models section describes
response models that are applied to the case study presented in
the Case study section. Finally, the Conclusion section provides
conclusions and discusses some issues and future research
directions.

Semi-supervised learning

Suppose that we have a data set of n customers. Among them,
nl customers have been targeted in a preliminary campaign and
have known class labels. For those labeled customers, a class
label of +1 or positive is assigned to a respondent in the previous
campaign, or −1 or negative to a non-respondent. The remaining
nu(=n−nl ) customers who do not have labels are called unla-
beled. Without loss of generality, we can denote the labeled set
2 “Transductive” means that one can only deal with data at hand, but cannot
handle unseen data. In other words, a modeling procedure should be performed
all over again every time new data arrive, such as hierarchical clustering for
example. It contrasts with inductive modeling where one obtains a tangible
model in a functional form that can handle unseen data. Although most of
recent TSVMs are in fact inductive, they are called transductive by convention.
byL = Xi; yið Þf gnl

i = 1 and the unlabeled set by U = Xif gni = nl + 1.
A d-dimensional feature vector, xi∈Rd, describes demographic
information and purchase history of the ith customer, and a class
label, yi∈{−1, +1}, indicates his or her response. Note that class
labels for the unlabeled customers, yif gni = nl + 1, are not
available.

The objective of response modeling is to identify customers
who are likely to respond. In particular, a model estimates a
score, usually in the form of a probability, that each customer
will respond, that is, f(xi)=p(yi=+1|xi)∈[0,1] for i=1,…n.
Then, for marketing decisions, a predicted label is assigned to
each customer:

y î =
+ 1; if f xið Þzh;
−1; if f xið Þbh;

�
ð1Þ

where a cut-off point, θ, is determined by considering various
conditions such as strategic goals, marketing costs, inventory
levels, and so on. A marketing campaign would be targeted to a
subset of customers whose predicted labels are +1, that is,
S = i jyî = + 1f g.

Response modeling has been considered exclusively in the
supervised learning setting, which is illustrated in Fig. 1a. A
model is built by estimating the functional relationship between
the feature vectors and the class labels in the labeled set, L.
Then, the model is applied to all existing customers to obtain
their predicted scores. Supervised learning approaches have
generally worked well for response modeling or other
prediction tasks. However, labeled data are often difficult,
expensive, or time-consuming to obtain, as they require actual
mailing campaigns. In such a situation, only a small number of
labeled data may be available, which may not be sufficient for
building an accurate model. One might wonder whether the
unlabeled data can be utilized in model building, and if so, how.

Semi-supervised learning can provide an answer for the
question (see Fig. 1b). While the true labels of the unlabeled
customers are unknown, their feature vectors are readily
available. A semi-supervised model is built using the feature
vectors of the unlabeled customers, U as well as the labeled data,
L. Of course, supervised learning models can also use the
unlabeled customer data for preprocessing such as feature
selection/construction and customer segmentation. After that,
however, the unlabeled data are not involved in model building at
all. On the other hand, semi-supervised learning can exploit the
unlabeled data in both preprocessing and model building stages.

While the term “semi-supervised”was first used by Merz, St.
Clair, and Bond (1992), inclusion of a small number of
unlabeled data in classification has been studied since the 1960s
by several researchers (Agrawala 1970; Fralick 1967; Hartley
and Rao 1968; McLachlan 1975, 1977; Scudder 1965), who
demonstrated the benefit of doing so either analytically or
empirically. The first argument for semi-supervised learning
with a large number of unlabeled data was made by O'Neill
(1978) who stated:

“Even when there is no control over the ratio of available
unclassified and classified data, unclassified observations
should certainly not be discarded.”



Fig. 1. Outlines of supervised and semi-supervised learning for response modeling.
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By the mid-1990s, it had been proven analytically that
unlabeled data can reduce misclassification error although
they are much less valuable than labeled ones (Castelli and
Cover 1995, 1996; Ratsaby and Venkatesh 1995). Though
based on different assumptions, they arrived at equivalent
conclusions; the classification error is expected to converge to
the Bayes optimal error, polynomially with respect to the
number of unlabeled data and exponentially with respect to
the number of labeled data. Since the late 1990s, semi-
supervised learning has gained popularity in the machine
learning community, mostly due to the emergence of
applications such as text classification (Blum and Mitchell
1998; Joachims 1999; Nigam et al. 2000; Sindhwani and
Keerthi 2007) and bioinformatics (Lanckriet et al. 2004; Shin
and Tsuda 2006; Shin, Lisewski, and Lichtarge 2007; Weston
et al. 2005) where labeled data are far more difficult to collect
than unlabeled data. Semi-supervised learning approaches
have been shown empirically to outperform supervised ones
in various classification tasks.

The difference between supervised and semi-supervised
learning can be interpreted from a probabilistic point of view
(Seeger 2000; Zhu 2005). The joint probability of a feature
vector-label pair, (x,y), can be decomposed as p(x,y)=p(x)
p(y|x). Supervised learning focuses only on the term p(y|x). For
example, logistic regression estimates p(y=+1|x), but does not
take p(x) into account at all. In other words, it is not concerned
with how the feature vectors are distributed. This contrasts with
unsupervised learning, for example clustering for customer
segmentation, in which the objective is essentially to estimate
p(x) with no predetermined labels available. On the other
hand, a semi-supervised learning model estimates p(y|x) while
taking p(x) into account. Thus, semi-supervised learning can be
considered to complement supervised learning with additional
information from the distribution of the feature vectors.
The benefit of semi-supervised learning can be attributed
to incorporating p(x) for regularization (Cozman and Cohen
2006; Seeger 2000), which indicates restricting the flexibility
of a model to prevent overfitting (Tikhonov and Arsenin
1977). In supervised learning, a small number of labeled data
points may lead to overfitting and high variance for
estimated model parameters, and in turn lead to high rates
misclassification error (Friedman 1997). In semi-supervised
learning, it is assumed that similar feature vectors lead to
similar labels, which is called the smoothness assumption.
According to this assumption, a model will avoid putting a
decision boundary in regions with high p(x) so that a sudden
change of class labels should not arise between similar
feature vectors. As a result, one can avoid overfitting since
unlabeled data discourage the model from being overly
sensitive to irregularities in a small number of labeled cases.
In this sense, semi-supervised learning can be considered a
regularization technique, like for example, ridge regression
(Malthouse 1999) that incorporates a penalty term to
constrain flexibility of a model. The difference is that in
semi-supervised learning, regularization is done by unlabeled
data, while in ridge regression a model is regularized, in a
Bayesian sense, by a prior belief on model parameters.

In particular, to improve performance using semi-supervised
learning, the following conditions are prerequisite (Chapelle,
Schölkopf, and Zien 2009):

• The smoothness assumption: Although the degree of
appropriateness of this assumption depends on the data at
hand and should be assessed based on domain-specific
knowledge, it is reasonable to believe that the assumption
holds in most classification problems including response
modeling. In fact, without the assumption, most super-
vised learning models would also fail. A stronger form of
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the assumption is the cluster assumption that data in a
cluster are likely to have the same labels. Therefore, if a
data set is believed to consist of well-separated clusters, a
semi-supervised learning model is highly likely to
improve upon a supervised model. On the contrary, if
two classes of data severely overlap or a data set is
known to have some discontinuity of labels over the
feature space, semi-supervised learning might not be
helpful.

• A small amount of labeled data and a large number of
unlabeled data: Obviously, a large amount of unlabeled
data is needed to make an influence on the resulting
model. This is not a critical issue, since unlabeled data are
abundant in most response modeling problems. On the
other hand, as stated above, with a small amount of
labeled data, a supervised learning model is likely to
overfit and perform poorly, especially in a high-
dimensional space. In this case, unlabeled data would
be particularly helpful to avoid overfitting. Conversely, if
there is a huge amount of labeled data available, there
should be very little room for improvement since
supervised learning would perform very well. From the
proofs of Castelli and Cover (1995, 1996) and Ratsaby
and Venkatesh (1995) that labeled data are far more
valuable than unlabeled data, it is clear that improvement
of semi-supervised learning diminishes as the amount of
labeled data increases. However, it is nearly impossible to
determine analytically for a particular problem how much
labeled data are needed for unlabeled data to be
unnecessary. In the Case study section, we investigate
empirically the effect of the volume of the labeled data in
response modeling.

One simple example of a semi-supervised model is a so-
called “cluster-and-label” approach (Nigam et al. 2000).
Consider a finite mixture model (McLachlan and Peel 2000)
that estimates the distribution of labeled and unlabeled data
by a mixture of K individual distributions, for example a
Fig. 2. Comparison of decision boundaries derived from supervised and semi-supe
negatively labeled one, and ‘.’ an unlabeled one.
Gaussian mixture model. A probability density of a feature
vector x can be written as follows:

p xð Þ =
XK
k =1

p kð Þp x jkð Þ; ð2Þ

where, for each component k, p(k) is the mixing probability
and p(x|k) is the component-conditional probability density
function. This is a fully unsupervised model as the class
labels, yi's, are not considered at all. Also consider a
supervised model for p(y|k) using the labeled data, for
example by simply counting the number of cases from each class
assigned to each cluster. If we assume that x and y are con-
ditionally independent given k, that is, p(x,y|k)=p(x|k)p(y|k), we
have the following model:

p y jxð Þ = p x; yð Þ
p xð Þ =

P
k p kð Þp x jkð Þp y jkð ÞP

k p kð Þp x jkð Þ ð3Þ

We have already estimated p(k) and p(x|k) by the
unsupervised model in Eq. (2) using both the labeled and
unlabeled data, while p(y|k) has been estimated by the
supervised model using the labeled data. Thus, the model in
Eq. (3) can be considered semi-supervised with supervised and
unsupervised concepts incorporated. The model would be
accurate when the cluster assumption is satisfied so that the
mixture model in Eq. (2) matches the data structure.
Moreover, to estimate accurately the parameters of the mixture
models, many unlabeled data points are needed. Note,
however, that model identification and estimation of Eq. (2)
are usually very difficult, especially for a high-dimensional
data set. Many semi-supervised learning methods in practice,
including one employed in this paper, do not estimate p(x)
explicitly.

Fig. 2 illustrates an example of decision boundaries
obtained by supervised and semi-supervised learning. Two
classes of data were generated by two Gaussian distributions.
Unlabeled data are represented by small dots while labeled
rvised learning frameworks: ‘o’ denotes a positively labeled data point, ‘x’ a
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data from the two classes are represented by o's and x's,
respectively. The thick solid line is the true, that is, Bayes
optimal, decision boundary and the thin dashed lines are the
decision boundaries obtained using supervised and semi-
supervised models. Looking at both the labeled and unlabeled
data, it is obvious that the data consist of two clusters and
that the decision boundary should lie between the two
clusters. A supervised model, unable to exploit the unlabeled
data, may result in a decision boundary that differs
significantly from the true boundary. A semi-supervised
model, on the other hand, by incorporating the unlabeled
data, gives a decision boundary much closer to the true
boundary.

It is also possible, though very difficult, to apply semi-
supervised learning to regression, that is, with continuous
output variables. However, semi-supervised learning for
regression has not yet been as well established and widely
used in practice for classification due to its obvious difficulty.
Namely, unlabeled data can have a very large, infinite in
theory, possible number of output values while only a small
number of discrete labels are considered in classification. For
more details, see Lafferty and Wasserman (2007) and the
references therein.

Response models

This section briefly describes supervised and semi-super-
vised response models in our case study. Three supervised
models are considered: logistic regression, and linear and radial
basis function (RBF) SVMs. As a semi-supervised model, the
TSVM is considered.

Logistic regression

Logistic regression is one of the most popular response
models and has been used in many papers as a “baseline”
model for benchmark purposes, for example Deichmann et al.
(2002), Ha, Cho, and MacLachlan(2005), and Zahavi and
Fig. 3. Margin maximization for an SVM and a TSVM: A margin is the distance betw
for a labeled data point and ξ ̂ for an unlabeled data point.
Levin (1997a). Logistic regression estimates a posterior
probability that a customer will respond as follows,

f xið Þ = p yi = + 1 jxið Þ = 1

1 + exp − b0 + bTxi
� �� � ; ð4Þ

where β0 and β=[β1, …βd]
T are d+1 parameters to be

estimated.
Support vector machines (SVMs)

SVMs (Cristianini and Shawe-Taylor 2000) have recently
been widely used for various classification tasks including
response modeling (Shin and Cho 2006; Viaene et al. 2001).
SVMs are concerned with finding a hyperplane that separates
two classes in the labeled set with a maximum margin, shown
in Fig. 3a as the distance between the two hyperplanes. The
following optimization problem is considered:

min
1
2
jjwjj2 + C

Xnl

i=1

ni; ð5Þ

subject to yi(w
TΦ(xi)+b)≥1-ξi, ξi≥0,i=1,…,nl ,where ξi is a

margin error on xi and w is a vector orthogonal to the
hyperplanes. The objective is to not only minimize the error
but also maximize the margin between the two classes. By
margin maximization, which plays a role of the shrinkage
term in ridge regression (Malthouse 1999), SVMs are known
to reduce overfitting. A user-defined parameter C controls
the trade-off between the margin and the error. A mapping
function Φ(·) projects vectors from the feature space into a
kernel space. We do not need to know the mapping
explicitly since the data appear only in the form of inner
products in the dual form, to which the kernel trick is
applied, that is, Φ(xi)

TΦ(xj)=k(xi, xj). In our case study, two
different kernel functions are employed:

linear kernel : k Xi;Xj

� �
= XTXj ð6Þ
een the two separating hyperplanes, that is, 2
jjwjj. Margin errors are denoted by ξ
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RBF kernel : k xi; xj
� �

= exp −
jjxi−xjjj2

2r2

 !
; ð7Þ

where σ is a pre-determined kernel width. We will call
SVMs with those kernels as linear and RBF SVMs,
respectively. A linear SVM generates a linear decision
boundary while an RBF SVM generates a more flexible
nonlinear boundary.

In the optimal solution, the decision function of a feature
vector xi is given by

g xið Þ = wTU xið Þ + b =
X

xjaLSV

ajyjk xj; xi
� �

+ b; ð8Þ

where LSV is the set of support vectors and αj's are the
Lagrangian multipliers related to the support vectors. From the
decision function, we compute the score of the customer xi in a
form of a probability as proposed in Platt (1999),

f xið Þ = p yi = + 1 jxið Þ = 1
1 + exp −g xið Þð Þ : ð9Þ

The solution to Eq. (5) can be obtained by quadratic
programming techniques. The computational complexity is
known to be proportional to the cubic of the number of cases,
that is, O(nl

3), which might be prohibitive for very large data
sets. Among many efficient approximation methods to
overcome this issue, we employ a method proposed in Fan,
Chen, and Lin (2005)3, which solves the problem in O(nl ) by
decomposing it into many small problems.

Transductive support vector machines (TSVMs)

There are several requirements for a response model, two of
which are specifically relevant to semi-supervised learning.
First is scalability. A customer database usually contains
hundreds of thousands or even millions of customers. While
supervised models deal with only labeled data, semi-supervised
models deal with a possibly larger amount of unlabeled data as
well. Second, a model should be inductive rather than
transductive. Suppose that we have built a model, M, based
on a data set, D = L;Uf g. We should be able to estimate the
scores of an additional set of unlabeled data, U V, without
building a new model, MV, from scratch. Many popular semi-
supervised methods, for example graph-based methods (Shin
and Tsuda 2006), fail to satisfy those two requirements. We
present a method that is both scalable and inductive: the TSVM.
Later in this section, we will clarify how the TSVM is inductive.

The TSVM (Joachims 1999) was proposed to exploit
unlabeled data, as an extension of the standard supervised
SVMs. As mentioned in the section on Semi-supervised
learning, the smoothness assumption entails the condition that
the decision boundary should avoid high-density regions. In the
case of SVMs, it is equivalent to avoiding putting data, labeled
or unlabeled, within the margin. In Fig. 3b, the dashed lines are
3 Its software implementation, LIBSVM, is available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm/.
the maximum margin boundary resulting from an SVM that
ignores the unlabeled data. With the unlabeled data, a TSVM
puts the decision boundary (the solid lines) at the maximum
margin for both the labeled and unlabeled data.

We describe a formulation given in Sindhwani and Keerthi
(2007) as follows:

min
k
2
jjwjj2 + 1

2nl

Xnl

i=1

n2i +
kT

2nu

Xn
i=nl + 1

n̂2i ; ð10Þ

subject to yi(w
TΦ(xi)+b)≥1-ξi,ξi≥0,i=1, …,nl ,

yî(w
TΦ(xi)+b)≥1–ξ î,ξ î≥0,i=nl , …n,

1
nu

Xn
i=nl + 1

max 0; sign wTU xið Þ + b
� �� �

= r;

where yî and ξ î are the predicted label and the predicted margin
error for an unlabeled sample, xi, respectively. Aside from a few
notational differences, this formulation is equivalent to incor-
porating Eq. (5) with the additional terms relating to the
unlabeled data. Both the known labels, yi's, and the predicted
labels, yî's, appear in this optimization problem since we need to
consider both the labeled and the unlabeled data. In particular,
the predicted labels are included in the second set of constraints
to discourage a model from having the unlabeled data within the
margin. The last term in the objective function plays a role of
minimizing the predicted margin error on the unlabeled data.
The two user-defined parameters, λ and λ⁎, determine the
relative importance of the margin and the errors on the labeled
and unlabeled data, respectively. The last constraint determines a
fraction, r, of the unlabeled data to be classified positive, which
is to alleviate the class imbalance problem. Usually, r is set to the
response rate in the labeled data.

As the linear kernel is employed in this paper, the TSVM can
be considered a direct extension of the linear SVM. The
decision function is essentially the same as Eq. (8), except that
the set of support vectors now contains some unlabeled data and
their predicted labels as well:

g xið Þ = wTU xið Þ + b

=
X

xjaLSV

ajyjk xj; xi
� �

+
X

xjaUSV

ajyĵk xj; xi
� �

+ b; ð11Þ

where Lsv and Usv are the sets of support vectors for the labeled
and the unlabeled data, respectively. The scores are computed
identically to Eq. (9). Afterward, if we are given an additional
set of unlabeled data, U V, we have two choices: induction or
transduction. Firstly, we can apply the decision function, Eq.
(11), directly to those new data. Alternatively, we can go
through another procedure of semi-supervised modeling by
formulating and solving a new optimization problem involving
DV= L;U;U Vf g. The decision on which procedure to choose
depends on the data at hand, time and resources available, and
so on.

The most critical concern for the TSVM is its computational
complexity. Finding the exact solution to Eq. (10) is NP-hard.
Much attention has been paid to developing efficient

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Table 1
Eight features used for the CoIL2000 data set.

Name Description

MKOOPKLA Purchasing power class
PPERSAUT Contribution car policies
PBRAND Contribution fire policies
AWAPART Number of private third party insurance
APERSAUT Number of car policies
ABRAND Number of fire policies
APLEZIER Number of boat policies
ABYSTAND Number of social security insurance policies
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approximation methods. This paper employs the linear TSVM
based on the modified Newton method proposed in Sindhwani
and Keerthi (2007)4, which has been shown to be both accurate
and efficient. For example, it was successfully applied to
problems with more than 800,000 data.

Case study

This section presents a case study conducted on two data
sets: the CoIL2000 and the DMEF4, for which four types of
response models are built. We briefly describe the data sets.
After introducing a few criteria to evaluate and compare their
performance, we show that the semi-supervised models perform
well on the data sets.

Data sets

The CoIL2000 data set5 was used in the CoIL Challenge
competition in 2000 (van der Putten and van Someren 2000)
and has been analyzed by a number of researchers (Elkan 2001;
Kim et al. 2005). It is concerned with a real world business
problem of an insurance company, which would like to predict
which customers are potentially interested in a caravan
insurance policy. Each customer is represented by an 85-
dimensional feature vector including demographic and product
usage information. Originally, the labeled set contains 5822
customers whose class labels are known while the unlabeled set
contains 4000 customers. The response rates for both sets are
roughly 6% with 348 and 238 respondents, respectively.

In the competition, the goal was to identify 800 most-likely-
to-purchase customers out of the 4000 unlabeled customers. In
this way, however, we can evaluate modeling performance on
only one realization of data split. As performance of a model may
show a large variation with regard to a specific data split
(Malthouse 2001), 30 different splits were generated and used for
evaluation. All results reported in this paper were averaged over
the 30 realizations of data splits. For each split, we randomly
sampled 4,000 customers who would be treated as unlabeled. To
investigate the effect of the amount of labeled data, nl , labeled
datawere further sampled from the remaining 5,822 customers so
that they account for 5, 10, 20, 30, 40, and 50% of total data. In
other words, with the number of unlabeled data fixed at 4,000, we
varied the numbers of labeled data to 211, 444, 1,000, 1,714,
2,667, and 4,000. Feature selection/construction is not our main
concern although it is very important. We used a set of features
with which the best performance in the competition was reported
(Elkan 2001). These features, as listed in Table 1, are related to
car ownership, wealthiness, and propensity to spend on insurance
coverage. We also applied a log transformation to features with
highly skewed distributions.

The DMEF4 data set6 involving an up-scale catalog mailing
task has been analyzed by various researchers (Ha, Cho, and
4 Its software implementation, SVMlin, is available at http://people.cs.
uchicago.edu/~vikass/svmlin.html.
5 Available at http://www.liacs.nl/~putten/library/cc2000/.
6 Available at http://www.directworks.org/Educators/Default.aspx?id=632.
MacLachlan 2005; Kim, Lee, and Cho 2008; Lee and Cho
2007; Malthouse 2001, 2002; Shin and Cho 2006). The original
problem is to predict the amount that each customer will spend
during the test period, from September 1992 to December 1992.
It is formulated into a classification problem where a class label
is +1 for a respondent who spent a non-zero amount and −1 for
a non-respondent who did not spend at all. The data set contains
101,532 customers, each of whom is described by 91 features.
The response rate is 9.4% with 9571 respondents and 91,961
non-respondents.

Preprocessing was performed similarly as with the
CoIL2000 data set. For each split, we sampled 50,000 unlabeled
data, and labeled data corresponding to the portions, pl, of 0.5,
1, 5, 10, 20, 30, 40, and 50%, which correspond to the numbers
of labeled data, nl , of 251, 505, 2,632, 5,556, 12,500, 21,429,
33,333, and 50,000, respectively. We used 17 features, some
original and some derived, reported in Malthouse (2002), as
listed in Table 2. The function I(·) for Tran51–Tran55 is an
indicator function that returns 1 if the condition is satisfied or 0
otherwise. A log transformation was also applied to features
with highly skewed distributions.

Experimental settings

We employed three supervised and one semi-supervised
models. The former includes logistic regression, and linear and
RBF SVMs, while the latter is the TSVM. In an actual response
modeling situation, scores are estimated for all customers,
labeled and unlabeled. In our case study, however, predictions
are made only on unlabeled customers for performance
evaluation purposes. The supervised models were constructed
using the feature vector-label pairs only of the labeled
customers and then the models were applied to the feature
vectors of the unlabeled customers to estimate their scores. On
the other hand, the TSVM estimated the scores of the unlabeled
customers using the feature vector-label pairs of the labeled
customers and the feature vectors of the unlabeled customers.
Note that, for both types of models, the class labels of the
unlabeled customers had been assumed to be unknown until
they were evaluated.

The models were evaluated in terms of how well they
performed on the unlabeled data. For the CoIL2000 data set, we
used, as a performance measure, the number of actual
respondents among the subset of the top 800 customers for

http://people.cs.uchicago.edu/~vikass/svmlin.html
http://people.cs.uchicago.edu/~vikass/svmlin.html
http://www.liacs.nl/~putten/library/cc2000/
http://www.directworks.org/Educators/Default.aspx?id=632


Table 2
17 features used for the DMEF4 data set.

Name Description

Original features
Purseas Number of seasons with a purchase
Falord LTD fall orders
Ordtyr Number of orders this year
Puryear Number of years with a purchase
Sprord LTD spring orders

Name Formulation Description

Derived variables
Recency Order days since 10/1992
Comb2 Σm=1

14 ProdGrpm Number of product groups
purchased from this year

Tran25 1/(1+ lorditm) Inverse of latest-season items
Tran38 1/recency
Tran42 log(1+ordtyr×falord) Interaction between the

number of orders
Tran44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ordhist × sprord

p
Interaction between LTD
orders and
LTD spring orders

Tran46
ffiffiffiffiffiffiffiffiffiffiffiffiffi
comb2

p
Tran51 I(0≤ recencyb90)
Tran52 I(90≤ recencyb180)
Tran53 I(180≤ recencyb270)
Tran54 I(270≤ recencyb366)
Tran55 I(366≤ recencyb730)

49H. Lee et al. / Journal of Interactive Marketing 24 (2010) 42–54
the sake of consistency with the original task. A more accurate
model would contain more respondents in the subset. On the
other hand, such a canonical performance measure does not
exist for the DMEF4 data set. Moreover, to compare the
response models fairly and avoid effects of a particular cut-off
point, we used the area under receiver operating characteristics
(AUROC) (Bradley 1997). An AUROC is computed by
integrating true positive rates over false positive rates on an
ROC curve, as indicated by the shaded area in Fig. 4. It is
equivalent to an expected true positive rate when randomly
selecting a false positive rate. Naturally, the more accurate a
model, the larger its AUROC. Random guessing, represented by
the straight line between (0, 0) and (100, 100), would produce
an AUROC value of 50%. Analysis in terms of AUROC gives
us a robust estimate of performance since various cut-off points
are “integrated out” into the value. Also, we compared the
Fig. 4. An example of an ROC curve and its AUROC.
response models using lift charts, generated by plotting a series
of lift values, that is, response rates for selected subsets divided
by a response rate for the whole population.

One of the most obvious difficulties in response modeling is
that the class distribution is severely unbalanced, that is, n+bbn-
where n+ and n-are the numbers of respondents and non-
respondents in the labeled set, respectively. Among the models
employed, only the TSVM can handle class imbalance by
adopting the last constraint in Eq. (10). For logistic regression,
we balanced the labeled data by subsampling n+ customers out
of n- non-respondents so that the response rate in the newly
sampled labeled set should be 50%. For SVMs, we assigned a
larger cost to the respondent class to ensure that the class is not
neglected. The objective function in Eq. (5) is now modified as
follows:

min
1
2
jjwjj2 + n−

nþ
C

X
i j yi = + 1f g

ni + C
X

i j yi = −1f g
ni ð12Þ

All the models except logistic regression require a set of
user-defined parameters to be optimized. One should pre-
specify the trade-off parameter, C in Eq. (5), for both SVMs
while additionally for the RBF SVM, the kernel width, σ in
Eq. (7), should be determined in advance. For the TSVM,
the two parameters, λ and λ⁎ in Eq. (10), should be
specified. All of these parameters were chosen for each split
of labeled data by five-fold cross-validation (Efron and Gong
1983), as illustrated in Fig. 5. At first, the labeled data are
partitioned into five groups of approximately equal sizes. A
model is constructed using four groups and then used to
score the remaining group, which is for a moment assumed
to be unlabeled. This procedure is repeated for all five
possible choices of the hold-out groups, indicated by the
filled blocks. In this manner, we can estimate performance
using only the labeled data. For each model, this cross-
validation procedure goes through various possible sets of
parameters, among which the one with the highest AUROC
is selected. Table 3 lists the optimal sets of parameters
obtained by cross-validation. Note that slightly different sets
of parameters were selected for different data splits and that
the most frequently selected parameters are listed as a
guideline.

Response modeling performance

Fig. 6a shows the numbers of actual respondents among top
800 customers identified by the models, averaged over 30
Fig. 5. Five-fold cross-validation.



Fig. 6. Performance for the CoIL2000 data set.

Table 3
Sets of parameters selected by cross-validation.

pl (%) CoIL2000 data set DMEF4 data set

Linear
SVM

RBF
SVM

TSVM Linear
SVM

RBF
SVM

TSVM

C C,σ k,k⁎ C C,σ k, k⁎

0.5 10−2 1, 23 10−2, 10−4

1 10−2 1, 23 10−2, 10−1

5 1 10−1, 22 10, 10 10−1 1, 23 10−4, 10−6

10 1 10−2, 22 10, 10 10−1 1, 23 10−4, 10−6

20 10−1 10−2, 22 1, 1 10−2 102, 23 10−4, 10−6

30 1 10−1, 2 10−2, 10−2 10−1 102, 22 10−4, 10−6

40 1 10−1, 2 10−2, 10−2 10−2 102, 22 10−4, 10−6

50 1 10−1, 22 10−2, 10−2 10−1 102, 22 10−4, 10−6
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different data splits of the CoIL2000 data set. The supervised
models, as expected, performed better in general as the number
of labeled cases increased. On the other hand, TSVM improved
until pl was 20% and then more or less stabilized. It was better
than any of the supervised models for all numbers of labeled
data. In particular, their differences were larger for smaller
numbers of labeled data cases. For example, with pl =5%, there
were only 198 non-respondents and 13 respondents among the
211 labeled data cases. The supervised models suffered from the
lack of labeled data, especially respondents. On the other hand,
TSVM could overcome it by exploiting 4000 feature vectors of
unlabeled data. Furthermore, only with pl =5%, TSVM captured
as many respondents as logistic regression did with pl =50%.
The Kolmogorov–Smirnov test was carried out since the
distributions of the results were clearly non-Gaussian. TSVM
identified more respondents than any supervised model for all
numbers of labeled data with a significance level of 5%.

The cut-off point of 800 may be arbitrary. To evaluate
their robustness regardless of a particular choice of a cut-off
point, we compared them in terms of the AUROC, as shown
in Fig. 6b. The general trends here are similar to those in Fig.
6a. The supervised models performed poorly for small
amounts of labeled data but improved as the number
increased. TSVM was clearly the best model again in terms
of the AUROC. The differences were statistically significant
for all cases except pl =50% where TSVM and logistic
regression resulted in essentially equivalent AUROCs.
Furthermore, the AUROC of TSVM with pl =10% was no
worse than that of any other model with any portion of
labeled data. It should be also noted that TSVM can be
considered a direct extension of linear SVM since our TSVM
model employed the linear kernel. TSVM outperformed linear
SVM by an almost constant difference, suggesting that the
unlabeled data contributed to the improvement consistently.
In addition, a linear model might be sufficient for this data set
since RBF SVM, a nonlinear model, was not substantially
better than the linear models.

Fig. 7 shows the lift charts for the numbers of labeled data
with 5≤pl≤30%. In the top row, the advantages of TSVM are
even more noticeable. TSVM identified much more of the
respondents than any of the supervised models for mailing
depths of 50% or less. Performance at lower mailing depths is
particularly important since a marketer would rather focus on
those customers with high scores. For example, for pl =5%,
TSVM identified about 50% more respondents than the best
supervised model, RBF SVM, for the 1% mailing depth. As
TSVM, as shown in Fig. 6, did not improve much as the
number of labeled data increased, its advantage over the other
models gradually diminished although it still continued to be
the best model.

The AUROCs for the DMEF4 data set are depicted in Fig. 8.
TSVM was clearly the best with statistical significance, for
pl =20%, which is equivalent to nl≤12,500. Similarly to the
CoIL2000 data set, the supervised models struggled when
there was only a small amount of labeled data. The
supervised models managed to perform as well as TSVM
for pl =30%, where the labeled set contained roughly 21,500
customers. In comparison, TSVM with pl =5%, with only
about 2,600 customers, resulted in high AUROCs, which was
comparable to or better than any supervised model with any
number of labeled data. Also for this data set, improvement of
TSVM over linear SVM was very consistent. Similarly to the
CoIL2000 data set, RBF SVM was not much better than the



Fig. 7. Lift charts for the CoIL2000 data set with respect to the number of labeled data.
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linear models, implying that the data set may have a linear
structure.

Fig. 9 shows the lift charts for 0.5≤pl≤10%. Again, TSVM
identified more respondents than the supervised models for
Fig. 8. Average AUROC values for the DMEF4 data set.
lower mailing depths. As the proportion of labeled data
increased, however, the supervised models gradually caught
up with TSVM. Still, its performance was respectable. For
instance, with pl of 5 and 10%, it identified about 100 and 50
more respondents than linear SVM for the mailing depth of
10%, respectively.

In summary, our semi-supervised model, TSVM, can
improve upon the supervised models, especially when only a
small number of labeled cases are available. For the CoIL2000
data set, it was better than the supervised models for any amount
of labeled data, from 200 to 4000. For the DMEF4 data set, it
outperformed the supervised models until roughly 20,000
labeled cases became available. The comparison between
TSVM and linear SVM suggested that the improvement was
causal, not just coincidental. Moreover, TSVM built with a
small number of labeled cases can produce results comparable
to the supervised models with a much larger number of labeled
data. Even when there were plenty of labeled data, nl =50,000
for example, TSVMwas no worse than other models. We would
argue that using TSVM in any situation would be harmless. The
lift charts showed that TSVM identified many more respon-
dents, in particular when a small number of customers were



Fig. 9. Lift charts for the DMEF4 data set with respect to the number of labeled data.
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assumed to be contacted, which is important from a marketing
point of view.

Conclusion

This paper introduced semi-supervised learning and pre-
sented a method applicable to response modeling. The TSVM,
an efficient and inductive semi-supervised model, exploits
unlabeled data as well as labeled data by maximizing the margin
between two classes for both types of data. Our case study on
the CoIL2000 and the DMEF4 data sets showed that semi-
supervised learning should be considered as a viable option for
response modeling, especially when a small number of labeled
cases are available. From the results on the two data sets, we
would argue that the TSVM can provide performance gain over
the supervised learning models when there are less than 20,000
labeled cases available. In addition, TSVMs resulted in
performance competitive to the supervised models that were
built using a much larger number of labeled cases. One might
save cost and time for a preliminary mailing campaign to collect
labeled data by employing TSVMs instead of logistic regression
for example.
Several future research directions need to be addressed. First
of all, more empirical studies need to be conducted on various
response modeling and other scoring tasks where there might
also be a lack of labeled data. Scoring models may have other
applications in marketing such as churn modeling (Jamal and
Bucklin 2006; Lemmens and Croux 2006; Neslin et al. 2006),
personalization (Bucklin and Sismeiro 2009; Montgomery and
Smith 2009; Murray and Häubl, 2009), estimation of customer
lifetime value and customer equity (Blattberg, Malthouse, and
Neslin 2009; Fader and Hardie 2009; Gupta 2009; Jamal and
Zhang 2009; Kumar et al. 2009), and managing communica-
tions and promotions for multichannel retailers (Neslin and
Shankar 2009). Second, a comparative study involving various
semi-supervised learning methods (Chapelle, Schölkopf, and
Zien 2009; Zhu 2005) can be considered. Some might be more
suited for response modeling than the TSVM. One obstacle is
that many of them are computationally inefficient. Much
research has been concentrated on reducing time and memory
requirements. Third, we assumed in this paper that labeled and
unlabeled data are drawn from the same distribution: the labels
missing completely at random (MCAR) case. In practice,
unlabeled cases may be systematically different from labeled
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ones: the labels missing not at random (MNAR) case. If labeled
data have been obtained from a previous campaign targeted to
customers who were more likely to respond, the labeled data
can be systematically different from the rest of the data. Semi-
supervised learning algorithms need to be expanded to deal with
MNAR cases (Chawla and Karakoulas 2005). Fourth, in this
paper, and in many other papers dealing with response
modeling, the underlying relationships between feature vec-
tor-label pairs are assumed to remain static. Hence, results from
a past campaign are used for building a model for a future
campaign. However, that is not always the case (Malthouse and
Derenthal 2008; Zahavi and Levin 1997b). Many events could
happen between the two campaigns that could change the
relationships. Moreover, a different marketing strategy may be
adopted for the future campaign. Thus the past results may not
necessarily account for the situations at the time of the future
campaign. Finally, we did not consider feature selection/
construction. However, feature selection schemes can improve
performance of response models as different approaches may
require different sets of features.
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