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a b s t r a c t

Objective: Many machine learning models have aided medical specialists in diagnosis and prognosis for
breast cancer. Accuracy has been regarded as a primary measurement for the performance evaluation of
the models, but stability which indicates the robustness of the performance to model parameter
variation also becomes essential. A stable model is in practice of benefit to the medical specialists who
may have little expertise in model tuning. The main purpose of this work is to address the importance of
the stability of a model and to suggest one of such models.
Methods: A comparative study of three prominent machine learning models was carried out for the
prognosis of breast-cancer survivability: support vector machines, artificial neural networks, and semi-
supervised learning models.
Material: The surveillance, epidemiology, and end results database for breast cancer was used, which is
known as the most comprehensive source of information on cancer incidence in the United States.
Results: The best performance was obtained from the semi-supervised learning model. It showed good
overall accuracy and stability under model parameter variation. The sharpening procedure enhanced the
stability of the model via the noise-reduction.
Conclusion: We suggest that semi-supervised learning model is a good candidate that medical profes-
sionals readily employ without consuming the time and effort for parameter searching for a specific
model. The ease of use and faster time to results of the predictive model will eventually lead to the
accurate and less-invasive prognosis for breast cancer patients.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Breast cancer is one of the major diseases of the world. It is the
most common type of cancer and the second leading cause of
cancer deaths (after lung cancer) in women (Cancer Facts &
Figures, 2010). In the United States, breast cancer is the most
frequently diagnosed malignancy in women. Moreover, it was
estimated that around 232,340 new cases of invasive breast cancer
would be diagnosed in women in 2013; and around 40,678
women were expected to die of this disease (Siegel et al., 2013).
Men can also suffer from this cancer (NC Institute. Breast Cancer
Statistics, USA, 2010). According to the American Cancer Society,
1970 new cases of breast cancer would be found in men in the
United States in 2010, and the expected number of deaths was 390
(Cancer Facts & Figures, 2010). Researchers are devoting consider-
able effort to search for enhanced and innovative techniques for
the early detection and treatment of breast cancer. Therefore, the
death rate for breast cancer has gradually decreased in women
ll rights reserved.
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since 1990. A larger decrease has occurred for women younger
than 50 years (3.2% annual decrease) than for those who are 50
years or older (2.0% annual decrease) (Cancer Facts & Figures,
2010).

The major clinical problem associated with breast cancer is to
predict the outcome (survival or death) after the onset of this
therapeutically resistant disseminated disease. In many cases, by
the time the primary tumor is diagnosed, clinically evident
metastases have already occurred. In general, treatments such as
chemotherapy, hormone therapy, or a combination are considered
to reduce the spread of breast cancer by decreasing the distant
metastases, by one-third. However, studies have shown that 70%
of patients receiving these therapies would have survived without
them (Sun et al., 2007). Therefore, the ability to predict disease
outcomes more accurately would allow physicians to make
informed decisions on the potential necessity of adjuvant treat-
ment. This could also lead to the development of individually
tailored treatments to maximize treatment efficiency (Khan et al.,
2008).

Prognosis helps to establish a treatment plan by predicting the
outcome of a disease. There are three predictive foci of cancer
prognosis: (1) prediction of cancer susceptibility (risk assessment),
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(2) prediction of cancer recurrence (redevelopment of cancer after
resolution), and (3) prediction of cancer survivability. In the third
case, research focuses on predicting the outcome in terms of life
expectancy, survivability, progression, or tumor-drug sensitivity
after the diagnosis of the disease. We focus on the survivability
prediction for a particular patient suffering from breast cancer.
According to (Delen et al., 2005), survival analysis is a part of
medical prognosis and involves the use of methods and techniques
for predicting the survival of a particular patient on the basis of
historical data of patients. In general, “survival” can be defined as
the patient remaining alive for a specified period after the
diagnosis of the disease. As recommended by (Delen et al., 2005)
and, (Brenner et al., 2002), if the patient is still living for 1825 days
(5 years) after the date of diagnosis, then the patient is considered
to have survived.

Informed decision making for breast cancer patients is the basic
motivation behind the growing emphasis on accurate and less-
invasive personalized predictive models based on machine learn-
ing techniques. This approach can allow many breast cancer
patients to avoid complex surgical biopsies, unnecessary adjuvant
treatments, and high medical costs. Moreover, in situations where
experienced oncologists are not available, predictive models
created via machine learning techniques can support physicians’
decision-making with acceptable accuracy (Amir et al., 2003).
However, oncologists must determine the best parameters for
the predictive models, and they have little or no expertise in such
parameter selection. It would therefore be convenient to use a
model that is robust to parameter variation. No matter how
accurate a predictive model is, it will not be useful unless it is
robust. To build a robust predictive model, information domain
researchers need a large quantity of breast cancer survival data for
analysis. There are two types of data: labeled (feature/label pairs)
and unlabeled (features without labels). Accumulating a substan-
tial quantity of labeled data is time-consuming, costly, and
requires confidentiality agreements. In general, the collection of
labeled survival data requires at least 5 years (Delen et al., 2005;
Brenner et al., 2002). Moreover, oncologist consultation fees must
be paid to confirm survivability. Furthermore, doctors and patients
seldom reveal their information. Now, the subject of inquiry is that
in order to acquire the survival data whether is it worthy to wait
for 5 years, pay significant amount of fee and exert a great deal
efforts to convince patients to disclose their personal medical
data? Unlabeled data can be collected with much less efforts.
Therefore, an economical solution is to use a large quantity of
unlabeled data and a small quantity of labeled data, together with
the semi-supervised learning (SSL) that has recently emerged in
the machine learning domain.

SSL is an attractive method for improving classification models
by using unlabeled data to support supervised learning (Zhong,
2006). In research areas such as speech recognition, text categor-
ization, parsing, video surveillance, and protein structure predic-
tion, it is difficult and time-consuming to collect labeled data
whereas unlabeled data can easily be gathered (Zhu, 2005). For
speech recognition, speech can easily be recorded from radio
broadcasts; for text categorization, text documents can be col-
lected from the Internet; for parsing, sentences are everywhere;
for video surveillance, surveillance cameras run continuously; and
for protein structure prediction, protein sequences are readily
available from gene databases (Zhu, 2005).

SSL is an appealing method in areas where labeled data is hard
to collect. It has been used in areas such as text classification
(Subramanya and Bilmes, 2008), text chunking (Andoy and
Zhangz, 2005), document clustering (Zhong, 2006), time-series
classification (Wei and Keogh, 2006), gene expression data classi-
fication (Bair and Tibshirani, 2004; Gong and Chen, 2008), visual
classification (Morsillo et al., 2009), question-answering task for
ranking candidate sentences (Celikyilmaz et al., 2009), and web-
page classification (Liu et al., 2006). However, it has not yet been
employed for the prognosis of breast cancer survivability. In
survival analysis, censored data are abundant because there are
many cases that patient data have not been updated along time,
and hence unlabeled. Therefore SSL is a good idea since it is able to
use the censored data to either modify or reprioritize the predic-
tions on survivability obtained from labeled patient data alone. To
the best of our knowledge, our paper is the first to explore the use
of graph-based SSL for the survival analysis of breast cancer. The
successful implementation of SSL in this domain could offer
predictability of survival outcomes with reasonable accuracy and
stability, relieving oncologists of the burden of data collection.

We compare up-to-date machine learning models that predict
the survivability of patients diagnosed with breast cancer. Note
that the prediction on survivability is predominately used for the
analysis where the interest is in observing time to death of a
patient, but in our study, it is dealt with as a classification problem
that predicts whether the patient belongs to the group of those
who survived after a specified period. We aim to find an accurate
and stable classification model. Such a model would allow medical
oncologists to make efficient decisions for treating breast cancer
patients. Contributions of this research include its authenticity and
in-depth empirical study. We used three different classification
models: support vector machine (SVM), artificial neural network
(ANN), and SSL. We use the surveillance, epidemiology, and end
results (SEER) cancer incidence database, which is the most
comprehensive source of information on cancer incidence and
survival in the United States (SEER et al., 2010).

The remainder of the paper is organized as follows. Section 2
provides background information on breast cancer research into
survivability analysis. Section 3 introduces SVM, ANN, and SSL
which are used for the comparative analysis. Section 4 gives the
details of the SEER dataset, various performance measures, and the
experimental results. Finally, Section 5 presents the conclusions.
2. Background

Research on breast cancer has led to enhanced methods, and
improved treatments in the form of less-invasive predictive
medicine. Thus, the death rate for this cancer has decreased in
recent years (Foundation et al., 2010). We now discuss the related
work in the area of breast cancer survivability.

An early work can be found in (Prentice and Gloeckler, 1978). In
the study, the authors applied a statistical model, called the
proportional hazards regression model, to breast cancer patient
data in order to discern if the patient is survived.

The authors of (Delen et al., 2005) used two popular data
mining algorithms, ANNs and decision trees, together with a
common statistical method, logistic regression, to develop predic-
tion models for breast cancer survivability. This research used
SEER dataset from 1973 to 2000 which consists of 433,272 records
and 72 variables. The decision tree turned out to be the best
predictor among them by achieving the best performance of
0.9362 in terms of classification accuracy.

An improvement in the results of decision trees for the
prognosis of breast cancer survivability is described in (Khan
et al., 2008). The authors propose a hybrid prognostic scheme
based on weighted fuzzy decision trees (FDT). This hybrid scheme
is an effective alternative to crisp classifiers that are applied
independently. It analyzes the hybridization of accuracy and
interpretability in terms of fuzzy logic and decision trees. They
used the SEER dataset from 1973 to 2003, which consists of
162,500 records with 17 variables after preprocessing. The result-
ing AUC values were 0.69 for FDT, and 0.77 for weighted FDT.
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In (Thongkam et al., 2008), the authors carried out data pre-
processing using the RELIEF attribute selection and then used the
Modest AdaBoost algorithm based on classification and regression
tree to predict breast cancer survivability (Dietterich, 1997;
Breiman, 1996; Rätsch et al., 2001). They used the Srinagarind
hospital database. The results showed that Modest AdaBoost
performs better than Real and Gentle AdaBoost.

In (Harry et al., 1997), ANN was suggested as a predictive model
for cancer survivability. Two datasets were used to evaluate the
performance: the Commission on Cancer's breast and colorectal
carcinoma Patient Care Evaluation (PCE) dataset and SEER dataset
from 1977 to 1982. ANN achieved 0.770 of AUC for the prediction
of 5-year survival of patients on the PCE dataset, and 0.730 for the
prediction of 10-year survival of patients on the SEER dataset. ANN
was also employed by the authors in (Lundin et al., 1999), in
predicting 5-, 10-, and 15- year breast cancer survivability based
on 951 patients’ data consisting of eight cancer incidence variables
including tumor size, axillary nodal status, histological type,
mitotic count, nuclear pleomorphism, tubule formation, tumor
necrosis, and age. The reported AUC values were 0.909, 0.886, and
0.883, respectively.

On the other hand, other machine learning models including
SVM also have been applied to the prediction problem of breast
cancer survivability. In (Thongkam et al., 2009), the authors
proposed a hybrid scheme to generate a high-quality dataset from
Srinagarind hospital database in Thailand in order to develop
improved breast cancer survival models. The scheme has two main
steps: (a) use of an outlier-filtering approach based on C-support
vector classification to remove outliers from the datasets; and (b)
over-sampling. The results showed that this hybrid scheme
improved the performance of SVM 29.83%, 29.83%, 47.34%, and
38.59% in terms of accuracy, sensitivity, specificity, and AUC score,
respectively.

In (Cruz and Wishart, 2006) the authors conducted a wide-
ranging investigation of different machine learning techniques,
discussing issues related to the types of data incorporated and the
performance of these techniques in breast cancer prediction and
prognosis. This review provides detailed explanations leading to
first-rate research guidelines for the application of machine
learning methods to cancer prognosis.

Most recently, a literature survey of machine learning techni-
ques for breast cancer prognosis prediction can be found in (Kim
and Shin, 2013).
3. Predictive models

Medical domain experts are not familiar with parameter selec-
tion of a specific model. Therefore, they are unable to use machine
learning models to predict the outcome of a disease. In contrast,
information domain experts are good at choosing models and
tuning the corresponding model parameters, but they may be
unable to interpret the results. One solution is to develop a model
that medical domain experts can use without the risk of modeling
mistakes. Technically, this is related to the robustness or stability
of a model under parameter variation. If the accuracies are
comparable among the candidate models, then their stabilities
become important. The remainder of this section presents short
descriptions of three representative classification models: SVM,
ANN, and SSL together with the explanation of their implementa-
tion in our research.

3.1. Artificial neural network (ANN)

An ANN is an analytical system inspired by the structure of
biological neural networks and their way of encoding and solving
problems (Delen et al., 2005; Peterson and Söderberg, 1993;
Abraham, 2005). We employed a well-analyzed and frequently
used ANN architecture known as multi-layer perceptron with
back-propagation algorithm. The ANN comprises three types of
layers: the input layer, hidden layers, and the output layer. The
nodes in the input layer supply input signals (activation patterns
from outside the system) to the nodes in the hidden layer via
weighted connections. The overall result of the model is repre-
sented by the nodes in the output layer which send output signals
(a weighted sum of the signals from the hidden nodes) on the
basis of a transfer function. In ANN, the accuracy of the model
often depends on the structure, i.e. the number hidden nodes, and
the initial weights associated with the connections between the
nodes. Generally, the number of hidden nodes is selected by trial-
and-error fashion and the initial weights are randomly chosen.

3.2. Support vector machine (SVM)

SVM involves finding an optimal decision boundary i.e., max-
imizing the margin by finding the largest achievable distance
among the separating hyperplane and the data points on either
side (Kotsiantis et al., 2006). The classification can be represented
by considering a set of input-output pairs D¼{(x1, y1), (x2, y2), …,
(xℓ, yℓ)}, where i¼1,…, ℓ. Here x∈X and y∈Y where ‘Y’ represents
the set of class labels, e.g., for binary classification Y¼{�1, +1}. In
a typical binary classification, training data points from two
different classes are separated by a hyperplane. The separating
hyperplane can be linear or non-linear. For linear classification,
SVM computes the linear decision function in the central gap of
the two classes by correctly classifying all the training data points
and placing the decision function as far from the given data points
as possible, to lessen the possibility of false prediction for the
unseen data points (Cardoso and Cardoso, 2007). If classes are not
linearly separable because of noisy data (measurement errors,
uncertainty in class membership, etc.), we can still use the linear
classifier with an error tolerance. In such a case, the aim is to find a
balance between margin maximization and misclassification mini-
mization. SVM solves the following quadratic programming pro-
blem to produce the maximum margin between the two classes
(Shin and Cho, 2007):

minΘðw!; ξÞ ¼ 1
2 ∥w

!∥2 þ C∑
M

i
ξi ;

s:t: yiðw!⋅ Φð x!iÞ þ bÞ≥1�ξi ;
ξi ≥0; i¼ 1;…;M: ð1Þ
The parameter C in Eq. (1) is the penalty for misclassifying a

data point. The higher the value of C, the more the SVM training is
compelled to avoid classification errors (Cardoso and Cardoso,
2007). The parameter ξi is the non negative slack variable, which
allows a certain level of misclassification for an inseparable case. If
the data points are separated by a non-linear hyperplane because
of some intrinsic property of the problem, it is more appropriate to
map the input feature space to a high-dimensional feature space
where the data points are separated by a linear hyperplane. This
mapping process φ is conducted by kernel functions. Among many

types of kernel functions, the RBF kernel kð u!; v!Þ ¼ e�γj u! v!j2 is
most widely used (Schölkopf and Smola, 2002). The parameter
values of the tradeoff C and the kernel width γ are specified by
users, and affect the performance of SVM.

3.3. Semi-supervised learning (SSL)

In many real world classification problems, the number of
class-labeled data points is small because they are often difficult,
expensive, or time-consuming to acquire, requiring qualified
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human annotators (Lundin et al., 1999; Shin et al., 2010; Altman
and Bland, 1994). On the other hand, unlabeled data can easily be
gathered and can provide valuable information for learning (He
et al., 2007). However, traditional classification algorithms such as
supervised-learning algorithms use only labeled data; therefore,
they encounter difficulties when only a few labeled data are given.
On the other hand, unsupervised learning is usually employed to
discover data structure from unlabeled data; however, the main
use of unsupervised learning is limited for clustering, dimension-
ality reduction, outlier detection, not for classification.

In SSL, the most recent category of machine learning algo-
rithms, it allows taking advantage of the strengths of both
supervised learning and unsupervised learning; meaningful repre-
sentation of input data is identified from unlabeled data, and then
a classification function is achieved on both labeled and the
unlabeled, which is smooth with respect to the underlying input
geometry(Zhu, 2005; He et al., 2007; Chapelle et al., 2006).

In SSL, the classification function is trained with a small set of
labeled data ðXl;YlÞ ¼ fðXi;YiÞnl

i ¼ 1g and a large set of unlabeled
data ðXuÞ ¼ fðXjÞnj ¼ nlþ1g, where Y¼71 indicates the labels. The
total number of data points is n¼nl+nu (Wang, 2007). In our
study, the graph-based SSL with sharpening is used, and the
following sub-sections present the details.

3.3.1. Graph-based SSL
In graph-based SSL, a weighted graph is constructed in which

the nodes represent the labeled and unlabeled data points and the
edges reflect the similarity between data points. According to
(Zhu, 2008), graph-based SSL methods are nonparametric, dis-
criminative, and transductive in nature. They assume label
smoothness over the graph. This assumption states that if two
data points are coupled by a path of high density (e.g., it is more
likely that both belong to same group or cluster), then their
outputs are likely to be close, whereas if they are separated by a
low-density region then their outputs need not be close (Chapelle
et al., 2006).

There are many graph-based SSL algorithms, e.g., mincut,
Gaussian random fields and harmonic functions, local and global
consistency, Tikhonov regularization, manifold regularization,
graph kernels from the Laplacian spectrum, and tree-based Bayes
(Zhu, 2008). There are many differences in the technical details,
but in all these methods the labeled nodes are set to the labels Ylϵ
{�1, +1}, the unlabeled nodes are set to zero (YU¼0), and the
pairwise relationships between nodes are represented via a
similarity matrix (Shin et al., 2010). Fig. 1 depicts a graph with
eight data points linked by similarity between them. In our study,
the patients have survived in 5 years after diagnosis are labeled as
‘+1’ (denoted as ‘S’ in the figure), and ‘�1’ (denoted as ‘D’)
otherwise. The patients whose survivability to be predicted are
unlabeled and denoted as ‘u’.

Given n data points, a graph is created based on the k-nearest
neighbors algorithm (kNN). Two nodes Xi and Xj are connected by
an edge if Xi is in Xj's k-nearest-neighborhood. The similarity
Fig. 1. Graph-based SSL: labeled nodes are represented by ‘S’ (Survival) and ‘D’
(Death), and unlabeled nodes are represented by ‘u’.
between the two nodes Xi and Xj is represented via wij in a weight
matrix W. Now, a label can propagate from (labeled) node Xi to
node (unlabeled) node Xj only when the value of wij is large. The
value of wij can be measured using the Gaussian function (Chapelle
et al., 2006):

wij ¼
exp � ðxi�xjÞT ðxi�xjÞ

α2

� �
if i� j

0 otherwise

8<
:

9=
;: ð2Þ

In Eq. (2), i� j indicates that an edge (link) can be constructed
between nodes Xi and Xj by kNN, where k is a user-specified
hyperparameter that controls the density of the graph.

The algorithm will output an n-dimensional real-valued vector
f ¼ ½f nl

i f
T
nlþ1�T ¼ ðf 1;…; f nl ; f nlþ1

;…; f nÞT , which can be thresholded to
make label predictions on f i ¼ 1;…; f n after learning. The graph-
based SSL assumes label smoothness over the graph. This assump-
tion states that if two data points are coupled by a path of high
density (e.g., it is more likely that both belong to same group or
cluster), then their outputs are likely to be close, whereas if they
are separated by a low-density region then their outputs need not
be close (Chapelle et al., 2003). This can be rephrased as fi of a
node should not be greatly different from fj of its adjacent nodes
(smoothness condition). The other assumption is about the loss or
error, which states, in labeled nodes, the value of fi should be
similar to the value of the given label yi (loss condition). Two
conditions are included in the following quadratic objective
function, and one can obtain the output vector f by minimizing
(Choi et al., 2008; Shin et al., 2010; Belkin et al., 2004; Chapelle
et al., 2003)

min
f

ðf�yÞT ðf�yÞ þ μf T Lf ; ð3Þ

where y¼ ðy1; …; yl; 0; …; 0ÞT and the matrix L, called the graph
Laplacian matrix, is defined as L¼D�W where D¼ diagðdiÞ;
di ¼∑iwij. The parameter μ trades off loss and smoothness. The
solution of this problem is

f ¼ ðI þ μLÞ�1y ð4Þ
3.3.2. Graph sharpening
The graph-sharpening scheme is an elegant method to improve

the performance of graph-based SSL algorithms by removing noisy
or undesirable relationships from the graph of the raw data points
(Shin et al., 2007, 2010). The algorithm operates on the similarity
(weight) matrix W, adjusting the connections between data
points. The graph-sharpening method is based on the following
observation: in an un-directed graph, as shown in Fig. 1, all the
relationships are reciprocated, so matrix of edge weights is
symmetric (Shin et al., 2010). However, we know that W repre-
sents connections between labeled and unlabeled nodes. It is not
desirable to consider all such edges (relationships) as symmetric
because some edges may express more valuable information in
one direction than in the other directions (Shin et al., 2010).
Therefore, the algorithm to improve the performance of graph-
based SSL is as follows:
�
 First, the algorithm penalizes the information flow from unla-
beled to labeled points because this may affect the information
in the system since such points hold uncertain information.
�
 Second, the algorithm disconnects the edges directly linked to
oppositely labeled points because they may possibly transmit
unconstructive information.
�
 Third, the spread of information between unlabeled points is
different, so the algorithm allows the unlabeled nodes to
synchronize with their neighbors.
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The procedure is called sharpening and the resulting graph is called
a sharpened graph. A sharpened graph is a directed graph. Fig. 2 depicts
sharpening results on the original SSL graph in Fig. 1.
4. Experiments

4.1. Dataset

We used the SEER datasets. It is an initiative of the National
Cancer Institute and is the premier source for cancer statistics in
the United States. SEER claims to have one of the most compre-
hensive collections of cancer statistics. It includes, but is not
limited to, incidence, mortality, prevalence, survival, lifetime risk,
and statistics by race/ethnicity. The dataset can be requested
online from the SEER website (http://www.seer.cancer.gov)
(SEER et al., 2010). The SEER datasets have been used by many
researchers. We used the breast cancer survivability dataset
(1973–2003). It consists of 162,500 records with 16 predictor
features and one target class variable. There are 16 features: tumor
size, number of nodes, number of primaries, age at diagnosis,
number of positive nodes, marital status, race, behavior code,
grade, extension of tumor, node involvement, histologicalTypeICD,
primary site, site specific surgery, radiation, and stage. The target
variable “survivability” of SEER dataset is a binary categorical
feature with values ‘�1’ (if the patient had not survived longer
than 5 years after diagnosis) or +1 (had survived).

Table 1 summarizes the features and their descriptions.

4.2. Measures of performance analysis

Sensitivity, specificity, accuracy, and the area under the ROC
curve (AUC) are to measure the prediction accuracy on the basis of
Fig. 2. Sharpened graph: information flows only from labeled nodes, S (Survival) or
D (Death), to unlabeled nodes u, but influence between the nodes u is regarded as
reciprocated.

Table 1
Prognostic elements of breast cancer survivability.

No. Features Description

1 Stage Defined by size of cancer tumo
2 Grade Appearance of tumor and its si
3 Lymph node involvement None, (1–3) minimal, (4–9) sig
4 Race Ethnicity: White, Black, Chinese
5 Age at diagnosis Actual age of patient in years
6 Marital status Married, single, divorced, wido
7 Primary site Presence of tumor at particular
8 Tumor size 2–5 cm; at 5 cm prognosis wor
9 Site-specific surgery Information on surgery during

10 Radiation None, beam radiation, radioisot
11 Histological type Form and structure of tumor
12 Behavior code Normal or aggressive tumor be
13 Number of positive nodes examined When lymph nodes are involve
14 Number of nodes examined Total nodes (positive/negative)
15 Number of primaries Number of primary tumors (1–
16 Clinical extension of tumor Defines spread of tumor relativ
17 Survivability Target binary variable defines c
the entries of the confusion matrix that contains information about
the actual and predicted classification (Thongkam et al., 2008).
Sensitivity is defined as the proportion of true positives that are
correctly identified by the classifier, which is TP=ðTP þ FNÞ, where
TP and FN stand for the number of correct predictions and that of
incorrect predictions, respectively, when a data point actually
belongs to the positive class. In our study, the positive class indicates
the group of the survived patients. Specificity is defined as the
proportion of true negatives that are correctly identified by the
classifier, which is TN=ðTN þ FPÞ, where TN and FP indicate the
number of correct predictions and that of incorrect predictions,
respectively, when a data point actually belongs to the negative
class. Using sensitivity and specificity, we try to find what propor-
tion of patients with abnormal test results is truly abnormal
(Altman and Bland, 1994). To assess the overall value of a classifier,
accuracy and AUC are used. Accuracy is a measure of the total
number of correct predictions, which is defined as ðTP þ TNÞ=ðTP þ
FN þ TN þ FPÞ when the value of classification-threshold is set to 0.
On the other hand, AUC is a threshold-independent measure off
model performance based on the receiver operating characteristic
(ROC) curve which plots the tradeoffs between sensitivity and
1-specificity for all possible values of threshold (Allouche et al., 2006).

4.3. Experimental setting

Three representative models, ANN, SVM, and SSL, are used to
perform classification on breast cancer survivability. We evaluated
these models on the basis of the aforementioned performance
measures: accuracy, sensitivity, specificity, and AUC. The breast
cancer survival dataset consisted of 162,500 data points: 128,469
positive cases and 34,031 negative cases. The dataset is large and
class-imbalanced. The large-sized dataset imposes computational
burden on most learning algorithms in training time and memory.
Classification on imbalanced datasets, on the other hand, usually
causes problems on biased accuracy to the overwhelmed class in
size. To avoid the addressed difficulties, 40,000 data points for the
training set and 10,000 for the test set are randomly drawn from
the original dataset without replacement, and both sets are class-
balanced to have the same proportion of positive and negative
classes. The positive class and the negative class are composed of
25,000 data points randomly drawn from the 128,469 positive
cases and 34,031 negative cases, respectively. Note that the test set
is regarded as unlabeled data for SSL. The equipoise dataset of
50,000 data points is eventually divided into 10 groups. And for
each set, five-fold cross validation is used and repeated five times.
Fig. 3 shows the experimental setting.
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The performance was measured under various combinations of
model parameters. The ranges of the user-specified values are set
as follows.
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The number of ‘hidden nodes’ and the random seed number for
‘initial weights’ are user-specified parameters of ANN. There are
some empirically derived rules-of-thumbs about how to set the
number of hidden nodes, of these, the most commonly relied on is
‘the optimal number of the hidden nodes is usually between the
number of the input nodes and the number of the output nodes.’
Since the dataset contains 16 input features and one output
feature, the ranges of the number of hidden nodes are set within
the bounds. For SVM, ‘Gamma’ and ‘C’ are determined by users
where the former is the RBF kernel width and latter is the penalty
for misclassifying a data-point. In order to find the relevant ranges
of both parameters, a preliminary experiment with the broader
ranges of C¼{0.1, 1, 10, 100, 1000} and Gamma¼{0.1, 1, 10, 100,
1000} was conducted a priori. Reasonable performances were
obtained from the ranges of 0.1–1 for C and less than 1 for Gamma.
Therefore, the ranges were narrowed and employed for compar-
ison as above. Appendix A presents the details of the experimental
results. Likewise, the user defined parameters for SSL are ‘k’ and
‘Mu’, where ‘k’ is the number of neighbors and ‘Mu’ is the tradeoff
between smoothness condition and loss condition. It is difficult to
Fig. 3. Experimental setting. Ta
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Fig. 4. Best performance comparison among ANN, SVM, and SSL in terms of accuracy, sensitivity, specificity, and AUC.

Table 3
Average AUC for different parameter combinations: ANN, SVM, and SSL.

ANN Random seeding

1 3 5 7 10

3 0.4870.06 0.5870.06 0.5770.06 0.5570.07 0.5770.06
6 0.5270.07 0.5570.06 0.5970.04 0.5670.06 0.5870.07

Hidden node 9 0.5270.09 0.5870.09 0.6070.05 0.5870.05 0.6070.07
12 0.5770.09 0.5770.08 0.5870.07 0.5570.06 0.6070.05
15 0.5470.09 0.5970.09 0.5770.06 0.5770.05 0.6170.09

SVM C

0.2 0.4 0.6 0.8 1

0.0001 0.7970.01 0.8070.01 0.8070.01 0.8070.01 0.8070.01
0.001 0.7970.01 0.7970.01 0.7970.01 0.7970.02 0.7970.02

Gamma 0.01 0.7570.01 0.7570.01 0.7570.01 0.7570.01 0.7470.01
0.1 0.6770.02 0.6770.02 0.6770.02 0.6770.02 0.6670.02
1 0.4570.04 0.4570.04 0.4470.04 0.4470.02 0.4670.03

SSL Mu

0.0001 0.01 1 100 1000

3 0.7170.01 0.7170.01 0.7170.01 0.7270.01 0.7270.01
7 0.7570.01 0.7570.01 0.7670.01 0.7670.01 0.7670.01

K 15 0.7770.01 0.7770.01 0.7770.01 0.7770.01 0.7770.01
20 0.7770.01 0.7770.01 0.7870.01 0.7870.01 0.7870.01
30 0.7870.01 0.7870.01 0.7870.01 0.7870.01 0.7870.01
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Fig. 5. Performance stability under model parameter variation: (a), (b), and (c) represent the AUC changes for parameter changes in ANN, SVM, and SSL, respectively.

Table 4
Expected AUC values without model tuning.

Dataset ANN SVM SSL Friedman test
(p-values)Avg_AUC Avg_AUC Avg_AUC

1 0.59 0.68 0.76 5.14e�8
2 0.56 0.69 0.77 1.96e�7
3 0.55 0.68 0.75 1.82e�8
4 0.56 0.68 0.75 1.82e�7
5 0.56 0.70 0.77 7.99e�8
6 0.54 0.71 0.75 1.21e�8
7 0.57 0.67 0.75 1.23e�7
8 0.58 0.69 0.78 1.08e�7
9 0.56 0.70 0.76 1.79e�7
10 0.59 0.71 0.76 2.20e�7

Mean (7std) 0.57 (70.07) 0.69 (70.13) 0.76 (70.03) 1.38e�6

Fig. 6. Box-whisker-plot for performance variation across 25 combinations of
model parameters presented in Table 3.
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find a known knowledge on the ranges where the optimal values
of the parameters exist, the search space is ranged in a broad scale
varying from 0.0001 to 1000 for ‘Mu’ and from 3 to 30 for ‘K’. In
the experiment, ANN and SVM were implemented using standard
Matlab toolboxes (http://cogsys.imm.dtu.dk/toolbox/ann/index.
html; http://sourceforge.net/projects/svm/), and for SSL, Matlab
codes for (3) and (4) in Section 3.3.2 were implemented based on
an optimization toolbox (http://www.alphaminers.net).

4.4. Results

Table 2 shows the results for the best parameter combination
out of the 25 experiments for each of 10 datasets. In terms of
accuracy, specificity, and sensitivity, the best performance was
achieved by the SSL, with a mean accuracy of 0.71, a mean
sensitivity of 0.76, and a mean specificity of 0.65. However, the
SVM model had the best AUC performance with a mean of 0.80.
ANN, which had the lowest AUC of the three models, had better
performance than SVM in accuracy, specificity, and sensitivity.
Thus, the comparison of the models depends on the chosen
measure. Fig. 4 compares the best performance of the three
models with respect to each of the four measures.

To find the right parameter values for a model, however, it
requires many experimental repetitions and the technical
expertise for model-tuning. Thus, it is not easy to find the best
parameter combination. Since the recent models have similar
performance, we can consider the robustness of the models to
parameter variation. If the performance of a model is not so
sensitive to parameter variation, then the loss that may be
incurred by layperson's choice for parameter values will be
minimized, which may be a possible scenario that can apply to
most interdisciplinary domain with informatics.

Table 3 shows the average AUC for different parameter combina-
tions for ANN, SVM, and SSL, and Fig. 5 shows the AUC differences
graphically. From the table and the figure, we see that SSL is stable
under parameter variation at a fairly high AUC value, but SVM and
ANN are highly sensitive to parameter variation. About the remark
on stability over parameter variation, Appendix C presents addi-
tional experimental results conducted on other datasets.
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Table 4 gives the expected AUC value of each model in the case
where the user has little knowledge of model tuning and model
parameter selection, so any values of the parameters might be
chosen. The expected AUCs of ANN, SVM, and SSL are 0.57
(70.07), 0.69 (70.13), and 0.76 (70.03), respectively.
The Friedman test was used to validate the significance of
differences in performance across the three models (Sheldon
et al., 1996). The last column of the table shows the resulting p-
values for the 10 datasets, which indicates the differences among
the three models are statistically significant. The box-whisker-plot
in Fig. 6 depicts the mean values and the standard deviations
across 25 combinations of model parameters presented in Table 3.
A smaller box area indicates more robustness or stability under
parameter variation. The plot shows that SSL has smaller boxes
with higher values of AUC, which makes them more accurate and
stable (or robust) than the other models.

It is worth observing that some models with a higher accuracy
than others may be heavily dependent on parameter selection. For
instance, the performance of SVM in our experiment tends to depend
on its two model parameters, the kernel parameter Gamma and the
regularization coefficient C. This implies that the model selection
should be carried out carefully by modeling experts. On the other
hand, SSL has reasonably good accuracy and are stable under
parameter variation, which makes the model selection easy and safe.
Table B1
Model parameters for best performance comparison in Table 2.

Dataset ANN SVM SSL

Random seeding Hidden node C Gamma Mu K

1 3 6 0.4 0.001 30 0.01
2 5 9 0.6 0.001 15 0.01
3 5 3 0.8 0.01 15 1
4 7 9 0.4 0.0001 20 100
5 10 9 0.4 0.001 30 0.01
6 5 12 1 0.01 15 1000
7 3 3 0.2 0.001 20 100
8 1 3 0.4 0.01 30 0.01
9 7 5 0.6 0.0001 30 1

10 10 9 0.8 0.0001 20 100
5. Conclusion

We have presented a comparison of various machine learning
techniques for breast cancer prognosis analysis. We suggested
using a model that bridges the domains of information and
medicine to aid medical specialists and information experts in
parameter selection when building a predictive model for medical
domain. In practice, however, medical practitioners attempting IT
work are expected to be either well versed with the modeling
technique used or work closely with IT specialists. In such a
viewpoint, our study may be regarded as overemphasizing the
benefits of robustness in allowing laypersons to build good models
which are not sensitive to modeling parameters. However, our
Table A1
Average AUC of SVM for different parameter combinations: broad ranges.

SVM C

0.1 1

Gamma
0.1 0.6770.02 0.6670.02
1 0.4570.04 0.4670.03
10 0.4470.24 0.4370.01
100 0.4470.04 0.4370.04
1000 0.4070.00 0.4070.00

Table A2
Average AUC of SVM for different parameter combinations: narrowed ranges.

SVM C

0.2 0.4

Gamma
0.0001 0.7970.01 0.8070.01
0.001 0.7970.01 0.7970.01
0.01 0.7570.01 0.7570.01
0.1 0.6770.02 0.6770.02
1 0.4570.04 0.4570.04
study is not only be of benefit to laypersons but also IT specialists
since in some learning problems, even simple parametric models
are not sufficiently robust to provide accurate descriptions for
input data or domain problems. There have been many such
researches that guarantee more robust behavior of model under
changes in parameter and input distribution (Bagnell, 2005;
Hernandez-Lobato et al., 2008; Provost and Fawcett, 2001;
Ramoni and Sebastiani, 2001).

In this paper, we attempted to discover the robust predictive
model among well-known machine learning algorithms for breast
cancer survivability. We compared three models: SVM, ANN, and
SSL. And we suggested that the SSL model can be a candidate that
would allow medical professionals or IT specialists to efficiently
employ for survival analysis without needing to select parameters
for a specific model. Appendix C presents additional experimental
results on this suggestion.

The firsthand exploitation of SSL for the prognosis of breast
cancer survivability is another attractive feature of our research.
We used the SEER survival data for our experiments. The results
showed that SVM performed reasonably well when the model
parameters were carefully tuned, but performance can fluctuate
10 100 1000

0.6670.02 0.6670.01 0.6670.01
0.4770.03 0.4770.03 0.4770.03
0.4470.01 0.4470.01 0.4470.01
0.4170.02 0.4070.00 0.4070.00
0.4070.00 0.4070.00 0.4070.00

0.6 0.8 1

0.8070.01 0.8070.01 0.8070.01
0.7970.01 0.7970.02 0.7970.02
0.7570.01 0.7570.01 0.7470.01
0.6770.02 0.6770.02 0.6670.02
0.4470.04 0.4470.02 0.4670.03
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depending on the choice of the parameters. ANN, on the other
hand, did not perform well in terms of accuracy and stability. The
best performance was obtained from SSL. They showed good
overall accuracy and were stable under model parameter variation.
The sharpening procedure seemed to enhance the stability of SSL
by the noise-reduction function of the algorithm. The advantage of
Table C2
Result comparison from Heart Disease data.

ANN Rando

1 3

3 0.52270.11 0.51970.09 0.51
6 0.62570.06 0.66370.04 0.64

Hidden node 9 0.65770.07 0.70470.05 0.70
12 0.72270.03 0.79370.04 0.80
15 0.83370.06 0.80970.05 0.82

SVM

0.2 0.4

0.0001 0.76370.01 0.76170.01 0.76
0.001 0.72270.02 0.72970.01 0.72

Gamma 0.01 0.58970.03 0.58970.02 0.59
0.1 0.52570.03 0.52570.02 0.52
1 0.49770.04 0.49770.04 0.50

SSL

0.0001 0.01

3 0.79070.01 0.79170.01 0.79
7 0.82270.01 0.82170.01 0.83

K 15 0.85270.01 0.85070.01 0.85
20 0.86570.01 0.86670.01 0.86
30 0.88670.01 0.88670.01 0.88

Table C1
Result comparison from Wisconsin breast cancer data.

ANN Random

1 3

3 0.76070.09 0.83970.06 0.740
6 0.95770.06 0.95770.06 0.957

Hidden node 9 0.95670.05 0.95470.06 0.955
12 0.95470.06 0.95470.05 0.954
15 0.95470.09 0.95470.09 0.953

SVM

0.2 0.4

0.0001 0.93570.01 0.93670.01 0.938
0.001 0.94270.01 0.91070.01 0.906

Gamma 0.01 0.92270.01 0.92270.01 0.922
0.1 0.84870.03 0.84870.01 0.851
1 0.45270.04 0.45270.03 0.452

SSL

0.0001 0.01

3 0.95770.01 0.95870.01 0.963
7 0.97270.01 0.97270.01 0.970

K 15 0.97170.01 0.97170.01 0.970
20 0.97170.01 0.97070.01 0.969
30 0.97370.01 0.97370.01 0.972
SSL is that the model extracts more information about the data by
incorporating unlabeled data, usually discarded in other models.
Finally, we expect that our findings will be helpful to medical
clinicians and IT specialists when informed decision-making is
required for more accurate and less invasive prognosis of breast
cancer survivability.
m seeding Avg(7std) [p-value]

5 7 10

370.09 0.49670.12 0.55770.09 0.692(70.114) [0.000]
470.05 0.62570.06 0.59070.07
370.07 0.75270.08 0.68970.09
670.04 0.80270.06 0.75670.05
170.06 0.85470.07 0.83370.07

C Avg(7std) [p-value]

0.6 0.8 1

370.01 0.76670.01 0.76970.01 0.623(70.107) [0.000]
770.01 0.72670.01 0.73070.02
070.02 0.59170.02 0.59670.02
570.02 0.52570.02 0.52570.02
970.03 0.50970.03 0.52870.03

Mu Avg(7std)

1 100 1000

570.01 0.80270.01 0.80270.01 00.846(70.033)
170.01 0.83070.01 0.83070.01
770.01 0.85770.01 0.85770.01
670.01 0.86970.01 0.86970.01
770.01 0.88970.01 0.88970.01

seeding Avg(7std) [p-value]

5 7 10

70.06 0.79170.06 0.75570.06 0.919 (70.074) [0.000]
70.08 0.95770.08 0.94070.08
70.07 0.95670.06 0.95570.09
70.04 0.95470.05 0.95570.08
70.06 0.95470.07 0.95370.09

C Avg(7std) [p-value]

0.6 0.8 1

70.01 0.94070.01 0.93970.01 0.816 (70.188) [0.000]
70.02 0.90170.02 0.90070.02
70.02 0.92270.02 0.92370.02
70.02 0.87170.02 0.87170.02
70.04 0.45270.03 0.45270.03

Mu Avg(7std)

1 100 1000

70.01 0.96470.01 0.96470.01 0.969 (70.004)
70.01 0.96870.01 0.96870.01
70.01 0.96970.01 0.96970.01
70.01 0.96970.01 0.96970.01
70.01 0.97270.01 0.97270.01



Table C3
Result comparison from Spect data.

ANN Random seeding Avg (7std) [p-value]

1 3 5 7 10

3 0.58870.10 0.57370.06 0.60470.06 0.59570.06 0.59570.09 0.669 (70.043) [0.000]
6 0.66170.09 0.67270.06 0.66570.06 0.65770.07 0.67870.08

Hidden node 9 0.68570.07 0.69070.06 0.68970.07 0.68070.07 0.68970.08
12 0.69670.07 0.70270.06 0.69870.08 0.69270.09 0.68670.07
15 0.71170.06 0.71370.06 0.70170.06 0.70770.09 0.70870.09

SVM C Avg(7std) [p-value]

0.2 0.4 0.6 0.8 1

0.0001 0.74570.01 0.73970.01 0.72670.01 0.72670.01 0.74070.01 0.729 (70.009) [0.000]
0.001 0.72670.01 0.72670.01 0.73170.02 0.73170.01 0.73270.02

Gamma 0.01 0.73270.01 0.73270.01 0.73270.03 0.73270.02 0.73270.02
0.1 0.73570.02 0.73570.02 0.73570.03 0.73770.04 0.74170.03
1 0.71570.03 0.71370.02 0.71570.03 0.71570.04 0.71470.04

SSL Mu Avg (7std)

0.0001 0.01 1 100 1000

3 0.73270.02 0.73170.01 0.73570.01 0.74470.01 0.74470.01 0.783 (70.030)
7 0.76070.02 0.76070.02 0.76370.02 0.78470.02 0.78470.02

K 15 0.82170.01 0.82170.01 0.81570.01 0.83170.01 0.83370.01
20 0.79170.02 0.78870.01 0.79170.01 0.79570.01 0.79470.01
30 0.77870.01 0.77770.01 0.79470.01 0.80170.01 0.80170.01
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Appendix A

For SVM, ‘Gamma’ and ‘C’ are determined by users where the
former is the RBF kernel width and the latter is the penalty for
misclassifying a data-point. In order to find the relevant ranges of
both parameters, a preliminary experiment with the broader
ranges of C¼{0.1, 1, 10, 100, 1000} and Gamma¼{0.1, 1, 10, 100,
1000} was conducted a priori. The following two tables, Table A1
and A2, present the details of the experimental results. From
Appendix C Table C1, reasonable performances were obtained
from the ranges of 0.1–1 for C and less than 1 for Gamma (the
shaded cells in the upper-left corner). Therefore, the resulting
ranges were narrowed to C¼{0.2, 0.4, 0.6, 0.8, 1} and Gamma¼
{0.0001,0.001, 0.01, 0.1, 1}, and employed for comparison.
Appendix B

The following table provides the optimal values of the model
parameters presented in Tables B1.
Appendix C

Additional experiments were conducted to show that and SSL
are stable under parameter variation at a reasonably high perfor-
mance. The following Appendix C Tables C1–C3 show the average
AUC for different parameter combinations for ANN, SVM, and SSL,
for Wisconsin Breast Cancer, Heart Disease, and Spect datasets,
respectively (available from UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml). Wisconsin Breast Cancer dataset is
to discern malignant (cancerous) examples from benign (non-
cancerous) examples, and Heart Disease dataset is to predict
absence or presence of heart disease. Spect dataset is on diagnosis
of cardiac Single Proton Emission Computed Tomography (SPECT)
images. Each example of the patients is classified into two
categories: normal and abnormal. The pairwise t-test was used
to validate the significance of differences in performance between
SSL and each of the remaining models. The numbers in the bracket
in the last column of the table show the p-values. For the three
datasets, SSL outperformed ANN and SVM, and the differences in
performance were statistically significant.
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