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Abstract

Support Vector Machine (SVM) employs Structural Risk Minimization (SRM) principle to generalize better than conventional machine

learning methods employing the traditional Empirical Risk Minimization (ERM) principle. When applying SVM to response modeling in

direct marketing, however, one has to deal with the practical difficulties: large training data, class imbalance and scoring from binary SVM

output. For the first difficulty, we propose a way to alleviate or solve it through a novel informative sampling. For the latter two difficulties,

we provide guidelines within SVM framework so that one can readily use the paper as a quick reference for SVM response modeling: use of

different costs for different classes and use of distance to decision boundary, respectively. This paper also provides various evaluation

measures for response models in terms of accuracies, lift chart analysis, and computational efficiency.
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1. Introduction

Direct marketing is concerned with identifying likely

buyers of certain products or services and promoting them

to the potential buyers through various channels. A response

model predicts a probability that a customer is going to

respond to a promotion or offer. Using the model, one can

identify a subset of customers who are more likely to

respond than others. A more accurate response model will

have more respondents and fewer non-respondents in the

subset. By doing so, one can significantly reduce the overall

marketing cost without sacrificing opportunities.

Various statistical and machine learning methods have

been proposed for response modeling. These researches will

be reviewed in Section 2. Most recent is Support Vector

Machine (SVM) that has been spotlighted in the machine

learning community thanks to its theoretical soundness and

practical performance. First, it is quite satisfying from a

theoretical point of view. SVM can be characterized by

three statements (Vapnik, 1999). SVM attempts to position
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a decision boundary so that the margin between the two

classes is maximized. The major parameters of SVM are

taken from the training patterns. Non-linear SVM is based

on the use of kernels to deal with high dimensional feature

space without directly working in it. Conventional neural

networks tend to overfit the training dataset, resulting in

poor generalization since parameter selection is based on

Empirical Risk Minimization (ERM) principle, which

minimizes the error on the training set. On the contrary,

the SVM formulation embodies the Structural Risk

Minimization (SRM) principle, which minimizes the error

on the training set with the lowest capacity. The difference

allows SVM to generalize better, which is the goal in

statistical learning. Theoretically, SVM includes a large

class of neural networks (including radial basis functions

networks), yet it is simple enough to be analyzed

mathematically. Second, SVM achieved great success in

practical applications as diverse as face detection and

recognition, handwritten character and digit recognition,

text detection and categorization, etc. (Dumais, 1998;

Heisele, Poggio, & Pontil, 2000; Moghaddam & Yang,

2000; Osuna, Freund, & Girosi, 1997). In particular, Dumais

(1998) and Joachims (1998) applied a number of learning

methods to text categorization, such as SVMs, nearest

neighbor classifiers, probabilistic Bayesian models, decision

trees, and neural networks. Among them, SVMs achieved

most substantial improvements over the currently best
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performing methods and they behaved robustly over a

variety of different learning tasks. Aside from the

aforementioned research efforts, Byun and Lee (2002)

gave a comprehensive up-to-date survey on SVM

applications.

However, there are some difficulties one would face

when SVM is attempted to be applied to response modeling.

First, SVM training can become computationally intract-

able. Generally, retailers keep huge amounts of customer

data. Moreover, a new customer’s record will be added on

top of it on and on. Unfortunately, in SVM quadratic

programming (QP) formulation, the dimension of kernel

matrix (M!M) is equal to the number of training patterns

(M) (Vapnik, 1999). Thus, when the dataset is huge, training

cannot be finished in a reasonable time even if we manage to

load the kernel matrix on the memory. Most standard SVM

QP solvers have time complexity of O(M3): MINOS,

CPLEX, LOQO and MATLAB QP routines. And the

solvers using decomposition methods have time complexity

of I$O(MqCq3) where I is the number of iterations and q is

the size of the working set: Chunking, SMO, SVMlight and

SOR (Hearst, Schölkopf, Dumais, Osuna, & Platt, 1997;

Platt, 1999). Needless to say, I increase as M increases.

Second, response modeling is likely to have a severe class

imbalance problem since the customers’ response rates are

typically very low. Most of customers belong to the non-

respondents’ group (class 1), while only a few customers

belong to the respondents’ group (class 2). Under such a

circumstance, most classifiers do not behave well, and

neither does SVM. Third, one has to find a way to estimate

scores or likelihoods from SVM. Given a limited amount of

marketing expenses, a marketer wants to maximize the

return or total revenue. Thus, one would like to know who is

more likely to purchase than others. Response models

compute each customer’s likelihood or propensity to

respond to a particular offer of a product or a service.

These likelihood values or scores are then used to sort the

customers in a descending order. Now, the marketer simply

applies a cut-off value based on the marketing expenses and

only those customers whose scores are larger than the value

are identified. However, an SVM classifier returns a binary

output, not a continuous output, which can be interpreted as

a score.

In this paper, we provide solutions for the obstacles

mentioned above. For the intractability problem of SVM

training, we present a pattern selection algorithm that

reduces the training set without accuracy loss. The

algorithm selects only the patterns near the decision

boundary based on neighborhood properties. Its perform-

ance was previously validated for various problems in

(Shin & Cho, 2003a). For the remaining two problems, we

provide guidelines within SVM framework so that one can

readily use the paper as a quick reference for SVM

response modeling. For the class imbalance problem, we

show how to incorporate different misclassification costs

into the objective function, and for the scoring problem,
we show theory-backup of how the distance from a

pattern to the decision hyperplane in the feature space can

be used as a score. In addition, we provide various

measures for evaluating the response models in both

accuracy and profit.

The remaining part of this paper is organized as follows.

Section 2 presents related work on various statistical or

machine learning methods applied to direct marketing

domain. The section also includes literature reviews on

pattern selection, class balancing, and scoring. Section 3

briefly explains the SVM theory, in particular, the patterns

critically affecting the training. Section 4 addresses the

obstacles in applying SVM to response modeling. The

section proposes ways to reduce the training set, to handle

the class imbalance problem, and to obtain the customer

scores from an SVM classifier. Section 5 provides the

experimental results on a direct marketing dataset. The

section includes the data set description, experimental

design, and performance measurements. We conclude this

paper with some future works in Section 6.
2. Related work

2.1. Various methods applied to direct marketing

Traditionally, statistical methods, mostly regression

techniques, have been applied to response modeling. Most

textbooks cover logistic regression as the de facto method

due to its simplicity, explainability and availability (Hosmer

& Lemeshow, 1989; Sen & Srivastava, 1990). Malthouse

(1999) compared ridge regression with stepwise regression

on the Direct Marketing Educational Foundation data set 2

(DMEF2). In his study, both methods were used for

determining the moderate number of variables in response

modeling. Empirically, he showed that ridge regression is a

more stable and less risky method than dropping variables.

In his recent report, a similar approach, which additively

considered the dollars spent in response to an offer, was

proposed (Malthouse, 2002). Colombo and Jiang (1999)

proposed a simple Recency–Frequency–Monetary (RFM)

stochastic model for ranking (or scoring) customers. The

RFM stochastic model derived from the response distri-

bution of the past was used to estimate the likelihood of

future responses. A customer mailing list obtained from a

tele-markeing company was used for comparing the

performance of the stochastic model with that of regression

and cross-tabulation model. They reported that the

stochastic model provided a more insightful alternative to

ranking customers.

Recently, machine-learning methods have been pro-

posed. They include decision trees and neural networks, etc.

Haughton and Oulabi (1997) compared the response lifts of

two mostly common decision tree algorithms: Classification

and Regression Tree (CART) and Chi-Square Automatic

Interaction Detector (CHAID). Although the two models are
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different in their tree-generating mechanism, there was no

significant difference in the response-lift perspective. Ling

and Li (1998) compared a Naive Bayes response model and

a C4.5 response model. Applying the ada-boost algorithm

(Freund & Schapire, 1996) to each base model for better

performance, they conducted experiments on three direct

marketing problems such as loan product promotion, life

insurance product campaign, and bonus program. All

experiments were designed to discuss the difficulties,

which can arise during the response modeling process,

such as class imbalance and justifiability of evaluating

measures. Coenen, Swinnen, Vanhoof, and Wets (2000)

proposed to combine C5, a decision tree algorithm, and

case-based reasoning (CBR). In this approach, the C5 based

response modeling was conducted in the first step. Then, the

respondents classified by the initial model were ranked by a

CBR similarity measure. They improved the classification

quality by accommodating a better ranking rather than the

accuracy of the base response model itself. Chiu (2002)

integrated genetic algorithm (GA) into a CBR based

response model. For better case identification accuracy,

the fittest weighting values on the cases were searched by

GA. On the application of an insurance product purchase

dataset, the base response model, CBR, achieved better

classification accuracy. Deichmann, Eshghi, Haughton,

Sayek, and Teebagy (2002) investigated the use of Multiple

Adaptive Regression Splines (MARS) as a response model.

MARS is an advanced decision tree technique enabling

piecewise linear regression. The MARS response model

outperformed the logistic regression model on the DMEF2.

There have also been many reports on neural networks.

Moutinho, Curry, Davies, and Rita (1994) predicted bank

customers’ responses using neural networks, and Bounds

and Ross (1997) showed that neural network based response

models improved the response rate from 1 or 2% up to 95%.

Zahavi and Levin (1997a) addressed unique merits and

demerits of neural networks for response modeling. Viaene,

Baesens, Van den Poel, Dedene, and Vanthienen (2001a)

proposed to select relevant variables for neural network

based response models. Ha, Cho, and MacLachlan (2005)

proposed a response model using bagging neural networks.

The experiments over a publicly available DMEF4 dataset

showed that bagging neural networks give more improved

and stabilized prediction accuracies than single neural

networks and logistic regression. Performance comparison

of the methods has been one of the controversial issues in

direct marketing domain. Suh, Noh, and Suh (1999) and

Zahavi and Levin (1997a,1997b) found that neural network

did not outperform other statistical methods. They

suggested to combine the neural network response model

and the statistical method. On the other hand, Bentz and

Merunkay (2000) reported that neural networks out-

performed multinomial logistic regression. Potharst, Kay-

mak, and Pijls (2001) applied neural networks to direct

mailing campaigns of a large Dutch charity organization.
According to their results, the performance of neural

networks surpassed that of CHAID or logistic regression.

Although SVM is applied to a wide variety of application

domains, there have been only a couple of SVM application

reports in response modeling. Cheung, Kwok, Law, and

Tsui (2003) used SVM for content-based recommender

systems. Web retailers implement a content-based system to

provide recommendations to a customer. The system

automatically matches his/her interests with product-

contents through web pages, newsgroup messages, and

new items. It is definitely a form of direct marketing that has

emerged by virtue of recent advances in the World Wide

Web, e-business, and on-line companies. They compared

Naive Bayes, C4.5 and 1-nearest neighbor rule with SVM.

The SVM yielded the best results among them. More

specific, SVM application to response modeling was

attempted by Viaene et al. (2001b). They proposed a

Least Square SVM (LS-SVM) based wrapper approach.

Wrapper indicates an input variable selection procedure

working together with a learning algorithm, and it is

frequently compared with alternative procedure, filter, that

performs variable selection independently from a learning

algorithm. In their study, the input variable pool was

composed of RFM and non-RFM variables from the

customer dataset provided by a major Belgian mail-order

company. Then, the wrapper approach was performed in a

sequential backward fashion, guided by a best-first variable

selection strategy. Their approach, a wrapper around the

LS-SVM response model, could gain significant reduction

of model complexity without degrading predictive

performance.

2.2. Pattern selection

Now, let us focus on the researches related to the

difficulties we addressed in this paper. First, the most

straightforward method to reduce a large training set is

random sampling. In SVM, however, the patterns near the

decision boundary are critical to learning. The training set

reduced by random sampling may omit those, thus would

lead to significantly poorer prediction results. Some SVM

researchers thus have attempted to identify those training

patterns near the decision boundaries. Lyhyaoui et al. (1999)

implemented RBF classifiers which somewhat resemble

SVMs, to clear the difference between both methods. RBF

classifiers were built on the patterns near the decision

boundary. To find them, they proposed 1-nearest neighbor

method in the opposite class after class-wise clustering. But

this method makes an impractical assumption that the

training set is clean. An approach focusing more on SVM

was proposed by Almeida, Braga, and Braga (2000) who

conducted k-means clustering on the entire training set. All

patterns were selected for heterogeneous clusters (whose

patterns disagree in their class membership) while only the

centroids were selected for homogeneous clusters.

The drawbacks of this research are that it is not clear how
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to determine the number of clusters, and that the clustering

performance is generally unstable (Liu & Nakagawa, 2001).

More recently, Shin and Cho (2003a) proposed a neighbor-

hood properties based pattern selection algorithm (NPPS),

which will be introduced in Section 4.1.
2.3. Class-balancing

Regarding class imbalance, many researchers have

recognized this problem and suggested several methods:

enlarging the small class dataset by random sampling,

reducing the large class dataset by random sampling, and

ignoring the small class dataset and using only the large

class dataset to build a one-class recognizer. Japkowicz

(2000) compared the three commonly used methods above

on the degree of concept complexity using a standard neural

network classifier. All the methods generally improved the

performance of the learning algorithm. In particular, the first

two methods were very effective especially as the concept

complexity increases while the last one was relatively less

accurate. Ling and Li (1998) addressed the specificity of the

class imbalance problem, which resides in marketing

datasets. They did not attempt to balance the imbalanced

class ratio for better predictive accuracy. Instead, to

circumvent the class imbalance problem, a marketing

specific evaluation measure, lift index, was suggested. Lift

index provides the customer’s rank (score) by reflecting the

confidence of classification result. They argued that even if

all of the patterns were predicted as one class, as long as the

learning algorithm produces suitable ranking of the patterns,

the imbalanced class distribution in the training set would

no longer be a problem. However, in their experiments the

entire best lift index was obtained when the sizes of the

classes were equal. Thus, they recommended to reduce

the large class dataset so that its size becomes equal to that

of the small class. Alternatively, different misclassification
Fig. 1. SVM classification problem: Through a mapping function F($), the

class patterns are linearly separated in a feature space. The patterns

determining both margin hyperplanes are outlined. The decision boundary

is the half-way hyperplane between margins.
costs can be incorporated into classes, which avoid direct

artificial manipulation on the training set (Lee, Gunn,

Harris, & Reed, 2001).

2.4. Scoring

Getting scores from a logistic regression model or a

neural network model with sigmoidal output function is well

known. The output gives a value of probability belonging to

the class that is ranged from 0 to 1. Thus the output value is

used as a score for sorting the customers. Ling and Li (1998)

made use of the ada-boost algorithm (Freund & Schapire,

1996), an ensemble approach, to get the customers’ scores.

Basically, ada-boost maintains a sampling probability

distribution on the training set, and modifies the probability

distribution after each classifier is built. The probability of

patterns with an incorrect prediction by the previous

classifier is increased. So these patterns will be sampled

more likely in the next round of boosting, to be learnt

correctly. A pattern’s probability to be incorrectly predicted

allowed a corresponding rank. Sometimes, scores could be

directly estimated by regression model having continuous

target value, i.e. the dollars spent or the amount of orders.

To do that, however, one needs to diagnose the problems the

target variable has and conduct suitable remedies to cure

them. Malthouse (2001) built a regression model to estimate

the dollars spent on DMEF4. There were a large number of

extreme values and the distribution was highly skewed. The

extreme values could have a large influence on estimate

values under least squares. And the variance of target

variable most likely increased with its mean (heteroscedas-

ticity). Thus, he performed log transformation to alleviate

skewness and heterocedasticity, and used winsorization to

exclude some extreme values of target. The predicted value

of the dollars spent was used as a score in lift chart analysis.

The lift result by means of regression based scoring will be

briefly compared with that by means of classification based

scoring in Section 5.4. Generally speaking, regression

problem requires more information from input variables

than classification problem does. In other words, binary

classification is the simplest subproblem of regression.

Producing good scores from marketing regression model is

difficult at the present time. In addition, since SVM theory

stemmed from classification context (Schölkopf, Burges, &

Smola, 1999), it is natural to get scores from an SVM

classifier.
3. Support vector machines and critical training patterns

Support Vector Machines (SVMs) are a general class of

statistical learning architectures that perform structural risk

minimization on a nested set structure of separating

hyperplanes (Cristianini & Shawe-Taylor 2000; Schölkopf

& Smola 2002, and Vapnik 1999). Consider a

binary classification problem with M patterns (ðxi, yi),
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iZ1,.,M where ðxi 2Rd and yi2{K1, 1}. Let us assume

that patterns with yiZ1 belongs to class 1 while those with

yiZK1 belong to class 2. SVM training involves solving

the following quadratic programming problem, which

yields the largest margin (2/kwk) between classes,
min Qð ðw; xÞ Z
1

2
jj ðwjj2 CC

XM
i

xi;

s:t:yið ðw$FððxiÞCbÞR1Kxi; xiR0; i Z 1;.;M;

(1)
where ðw 2Rd, b2R (see Fig. 1). Eq. (1) is the most

general SVM formulation allowing both non-separable and

nonlinear cases. The xs are nonnegative slack variables for a

non-separable case, which play a role of allowing a certain

level of misclassification. The F($) is a mapping function

for a nonlinear case that projects patterns from the input

space into a feature space. This nonlinear mapping is

performed implicitly by employing a kernel function,

Kððx; ðx 0Þ, to avoid the costly calculation of inner products,

FððxÞ$Fððx 0Þ. There are three typical kernel functions, RBF,

polynomial, and tansig in due order,
Kððx; ðx 0Þ Z expðKjjðxKðx 0jj2=2s2Þ;

Kððx; ðx 0Þ Z ððx$ðx 0 C1Þp;

Kððx; ðx 0Þ Z tanhðrððx$ðx 0ÞCdÞ:

(2)
The optimal solution of Eq. (1) yields a decision function

of the following form,
Fig. 2. Three categories o
f ððxÞ Z signð ðw$FððxÞCbÞ

Z sign
XM
iZ1

yiaiFððxiÞ$FððxÞCb

 !

Z sign
XM
iZ1

yiaiKððxi; ðxÞCb

 !
; (3)

where ais are nonnegative Lagrange multipliers associated

with training patterns, respectively. The solutions, ais, are

obtained from the dual problem of Eq. (1), which minimizes

a convex quadratic objective function under constraints

min
0%ai%C

Wðai; bÞ

Z
1

2

XM
i;jZ1

aiajyiyjKððxi$ðxjÞK
XM

iZ1

ai Cb
XM

iZ1

yiai:

The first-order conditions on W(ai, b) are reduced to the

Karush–Kuhn–Tucker (KKT) conditions,

vWðai;bÞ

vai

Z
XM

jZ1

yiyjKððxi;ðxjÞaj CyibK1 Zyif ððxiÞK1 Zgi;

vWðai;bÞ

vb
Z
XM

jZ1

yjaj Z0;

(4)

where �f ð$Þ is the function inside the parentheses of sign in

Eq. (3). The KKT complementarity condition, Eq. (4),

partitions the training pattern set into three categories

according to the corresponding ais.

(a) giO0/aiZ0: irrelevant patterns

(b) giZ0/0!aI!C: margin support vectors

(c) gi!0/aiZC: error support vectors
f training patterns.



H.J. Shin, S. Cho / Expert Systems with Applications 30 (2006) 746–760 751
Fig. 2 illustrates those categories (Cauwenberghs &

Poggio, 2001; Pontil & Verri, 1998). The patterns

belonging to (a) are out of the margins, thus irrelevant

to training, while the patterns belonging to (b) and (c) are

critical ones directly affecting training. They are called

support vectors (SVs). The patterns of (b) are strictly on

the margin, hence called margin SVs. On the other hand,

the patterns of (c) lie between two margins, hence called

error SVs but are not necessarily misclassified. Going

back to Eq. (3), we can now see that the decision

function is a linear combination of kernels on only those

critical training patterns (denoted as SVs) because the

patterns corresponding to aiZ0 have no influence on the

decision result.

f ððxÞ Z sign
XM

iZ1

yiaiKððxi; ðxÞCb

 !

Z sign
X

i2SVs

yiaiKððxi; ðxÞCb

 !
: (5)

To sum up, it is clear in SVM theory, which

patterns are of importance to training. Those are

distributed near the decision boundary, and fully and

succinctly define the classification task at hand. And the

SVMs trained with different kernel functions (RBF,

polynomial, tansig) on the same training set have been

founded to select almost identical subset as support

vectors (Schölkopf et al., 1995). Therefore, it is worth

finding such would-be support vectors in advance.
4. Support vector machines for response modeling

4.1. Large training dataset

We propose to use a neighborhood property based pattern

selection algorithm (NPPS) (Shin & Cho, 2002, 2003a). The

idea is to select only those patterns located around decision
Fig. 3. NPPS and random sampling select different subsets: outlined circles and squa

(respondents’ group), respectively. Black solid circles and squares are the selected
boundary since they are the ones that contain most

information. Contrary to a usually employed ‘random

sampling,’ this approach can be viewed as ‘informative or

intelligent sampling’. Fig. 3 conceptually shows the

difference between NPPS and random sampling in selecting

a subset of the training data. NPPS selects the patterns in the

region around the decision boundary, while random

sampling selects those from the whole input space.

Obviously, the decision boundary is not known until a

classifier is built. Thus, the algorithm utilizes neighborhood

properties to infer the proximity of a pattern to the decision

boundary. The first neighborhood property is that ‘a pattern

located near the decision boundary tends to have more

heterogeneous neighbors in their class membership’. Thus,

the proximity of pattern ðx’s to the decision boundary was

estimated by ‘Neighbors_Entropy (ðx, k)’, which is defined

as the entropy of the pattern ðxs k-nearest neighbors’ class

labels,

Neighbors_Entropyððx; kÞ Z
XJ

jZ1

Pj logJ

1

Pj

;

where Pj is defined as kj/k where kj is the number of

neighbors belonging to class j among the k nearest

neighbors of ðx in J class classification problem. A pattern

with a positive Neighbors_Entropy (ðx,k) value is assumed to

be close to the decision boundary, thus selected for training.

Those patterns are likely to be SVs, which correspond to the

margin SVs in Fig. 2(b) or the error SVs in Fig. 2(c). Among

the patterns having a positive value of Neighbors_Entropy

(ðx,k), however, overlapping or noisy patterns are also

present. These patterns have to be identified and removed as

much as possible since they are more likely to be the error

SVs misclassified in Fig. 2(c). The second neighborhood

property thus dictates that ‘an overlap or a noisy pattern

tends to belong to a different class from its neighbors’. If a

pattern’s own label is different from the majority label of its

neighbors, it is likely to be incorrectly labeled. The measure

‘Neighbors_Match (ðx, k)’ is defined as the ratio of ðx’s
res are the patterns belonging to class 1 (non-respondents’ group) and class 2

patterns.



Fig. 4. NPPS.

Table 1

Notation

Symbol Meaning

D the original training set whose cardinality is M

Di
e the evaluation set at ith step

Di
o A subset of Di

e, the set of patterns to be ‘expanded’ from Di
e

each element of which will compute its k nearest neighbors

to constitute the next evaluation set, DiC1
e

Di
x A subset of Di

e, the set of patterns ‘not to be expanded’ from

Di
e, or Di

x ZDi
e KDi

o

Di
s the set of ‘selected’ patterns from Di

o at ith step

Si
o the accumulated set of expanded patterns, giK1

jZ0D
j
o

Si
x the accumulated set of non-expanded patterns, giK1

jZ0D
j
x

Si
the accumulated set of selected patterns, giK1

jZ0D
j
s the last of

which SN is the reduced training pattern set

kNN ððxÞ the set of k nearest neighbors of ðx
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neighbors whose label matches that of ðx,

Neighbors_Matchððx; kÞ

Z
jfðx 0jlabelððx 0Þ Z labelððxÞ; ðx 0 2kNNððxÞgj

k
;

where kNNððxÞ is the set of k nearest neighbors of ðx. The

patterns with a small Neighbors_Match (ðx, k) value is likely

to be the ones incorrectly labeled. Only the patterns

satisfying the two conditions, Neighbors_Entropy ððx; kÞO
0 and Neighbors_Match ððx; kÞRb$ð1=JÞð0!b%1Þ, are

selected. However, the NPPS evaluating kNNs for M

patterns have time complexity of O(M2), so the pattern

selection process itself can be time-consuming. To

accelerate the pattern selection procedure, let us consider

the third neighborhood property, ‘the neighbors of a pattern

located near the decision boundary tend to be located near

the decision boundary as well’. Assuming the property, one

may compute only the neighbors’ label entropy for the

patterns near the decision boundary instead of all the

training patterns. Only the neighbors of a pattern satisfying

Neighbors_Entropy ððx; kÞO0, are evaluated in the next step.

This lazy evaluation reduce the time complexity from

O(M2) to O(vM), where v is the number of patterns in the

overlap region. In most practical problems, v!M holds. We

provided the time complexity analysis for the fast NPPS in

(Shin & Cho, 2003b), and a systematic procedure for

determining the value of k in (Shin & Cho, 2003c).

The algorithm and related notations are shown in Fig. 4

and Table 1.

Fig. 5 depicts one of the experimental results previously

reported (Shin & Cho, 2003a). The training set consisted of
600 patterns generated from four Gaussian densities

N1A Z ðxjN
1

1

" #
;

0:52 0

0 0:52

" # !( )
;

N1B Z ðxjN
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" #
;
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0 0:52

" # !( )
;
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K1

1

" #
;
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" # !( )
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N2B Z ðxjN
1

K1

" #
;

0:52 0

0 0:52

" # !( )
:

And the classes, C1 and C2, were defined as

C1 Z ðxjðx 2N1AgN1B;
K3

K3

" #
% ðx%

3

3

" #( )
;

C2 Z ðxjðx 2N2AgN2B;
K3

K3

" #
% ðx%

3

3

" #( )

Fig. 5(a) is a typical result of SVM trained with all

patterns. Fig. 5(b) shows the result of SVM trained with the

180 selected patterns by the naive or the fast NPPS (30.0%

of the training set). The decision boundaries in both figures

look quite similar, thus, generalization performance is

similar. Furthermore, the NPPS reduced SVM training time

98%, almost two orders of magnitude.
4.2. Class imbalance

Usually there are many more non-respondents than

respondents in training datasets. Thus, sub-sampling of

non-respondent class data is the most widely used method to

balance the datasets. However, random sampling allows

‘important’ patterns near the decision boundary to be

missed. Those patterns are likely to become support vectors.



Fig. 5. Patterns and SVM decision boundaries of Continuous XOR Problem: decision boundary is depicted as a solid line and the margins are defined by the

dotted lines in both sides of it. Support vectors are outlined.
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Loss of those patterns could result in a poor generalization

performance of SVM. Thus, instead, we propose to employ

different misclassification costs to different class errors in

the objective function, which is naturally allowed in SVM.

This approach is not only safer, but also more principled.

Let m1 and m2 denote the size of class 1 and class 2 data

sets, respectively, with m1[m2 and MZm1Cm2. One way

to alleviate data imbalance problem is to assign to a large

class a smaller cost while assign to a small class a larger

cost, which assures that a small class is not ‘neglected.’ In

response modeling, there are many more non-respondents

than respondents, thus the size of non-respondents is m1

while that of respondents is m2. One way to accomplish it is

to define and assign C1 and C2 to each class as below

Qð ðw; xÞ Z
1

2
jj ðwjj2 CC1

X
i2 nonrespondents

xi CC2

X
i2 respondents

xi;

(6)

where C1 and C2 are defined, respectively, as

C1 Z
m2

M
$C; C2 Z

m1

M
$C: (7)

In order to emphasize small respondent data set, a larger

cost C2 is assigned to its error term. Constant C is the

original cost term used in Eq. (1).
4.3. Getting scores from an SVM classifier

The objective of response modeling is to compute the

likelihood or propensity of each customer to respond to a

particular offer so that the mailing response or profit is

maximized. Lift chart is commonly used for this purpose,

which sorts the customers by the descending order of their

estimated value (score), and then the customers in the first

several deciles are finally decided to be mailed. Although an

SVM classifier returns a binary output (K1 or 1) as shown

in Eq. (5), one can still estimate a score based on the

distance between a pattern and the decision boundary. In

other words, we assume that a pattern located further from

the decision boundary has a higher probability of belonging

to that class. The decision boundary hyperplane �f ððxÞ in a
feature space F is represented as

�f ððxÞ Z
X

i2SVs

yiaiFððxiÞ$FððxÞCb Z 0 (8)

from Eq. (5). It should be noted that the decision boundary is

a hyperplane in the feature space F even though it is a

nonlinear hyper-surface in the input space. In the feature

space, hence, the distance from a pattern FððxÞ to the

decision boundary hyperplane �f ððxÞ can be calculated by

distðFððxÞ; �f ððxÞÞ Z
j �f ððxÞj

j
P

i2SVs yiaiFððxiÞj
2
: (9)

The exact value of the distance is possible to obtain from

Eq. (9) by using kernel trick (Vapnik, 1999) even though the

actual mapping function F($) is not known: a kernel

function Kððx; ðx 0Þ replaces FððxÞ$Fððx 0Þ particularly during the

denominator calculation. However, one does not need to

know the exact value of the distance, since only a relative

score or rank is all that is required in lift chart analysis. The

denominator in Eq. (9) is common for all patterns, thus the

signed function value in the numerator, �f ððxÞ, can be used in

computing ranks. The larger the value of �f ððxÞ, the lower the

rank of that particular customer’s likelihood becomes.
5. Experiments

This section provides the empirical results of SVM based

response modeling with the proposed approach. In

particular, the performance evaluation measures pertinent

to response modeling are also proposed and measured.

5.1. Dataset

In machine learning literature, so-called standard and

public datasets are used. But, in response modeling, or in

direct marketing for that matter, such datasets do not seem

to exist. Many papers use a unique dataset, which is not

available for other researchers. The only exception seems to

be datasets from the Direct Marketing Educational

Foundation (DMEF) (The Direct Marketing Association).

The DMEF makes marketing datasets available to
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researchers. Dataset DMEF4, was used in various

researches (Ha et al., 2005; Malthouse, 2001, 2002). It is

concerned with an up-scale gift business that mails general

and specialized catalogs to its customer base several times

each year. The problem is to estimate how much each

customer will spend during the test period, 09/1992–

12/1992, based on the training period, 12/1971–06/1992.

There are 101, 532 patterns in the dataset, each of which

represents the purchase history information of a customer.

Each customer is described by 91 input variables. A subset

of 17 input variables, some original and some derived, were

employed just as in (Malthouse, 2001) (see Table 2). The

dataset has two target variables, target mailing dollars

(TARGDOL) and target mailing orders (TARGORD). The

former indicates the purchase dollar amount during the test

period, and the latter indicates the number of orders during

the test period. The TARGDOL or the TARGORD could be

directly estimated by building a regression model. Malt-

house (2001) built a regression model to estimate the value

of TARGDOL. But due to the problems of regression

(Section 2), we formulated the problem into a classification

one. A new target variable, RESPONSE, was defined as

follows: 1 if TARGDOL (TARGORD)O0, 0 otherwise. Ha

et al. (2005) used the same derivation to fit a neural network

classifier. Thus, all the customers were categorized into

either a non-respondent (class 1) or a respondent (class 2).

The response rate is 9.4%, which means the class

distribution of the dataset is highly imbalanced.
Table 2

Input Variables

Variable Formula Description

Original variables

Purseas Number of seasons with a purchase

Falord Life-to-date (LTD) fall orders

Ordtyr Number of orders this year

Puryear Number of years with a purchase

Sprord LTD spring orders

Derived variables

Recency Order days since 10/1992

tran38 1/recency

tran51 0%recency!90

tran52 90%recency!180

tran53 180%recency!270 Five dummy variables (tran51–55)

having the value 1, if the condition is

satisfied, otherwise the value 0

tran54 270%recency!366

tran55 366%recency!730

comb2 P14

iZ1

prodgrp i
Number of product groups purchased

from this year

tran25 1/(1Clorditm) Inverse of latest-season items

tran42 log(1Cordtyr!
falord)

Interaction between the number of

orders

tran44
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ordhist!sprord

p
Interaction between LTD orders and

LTD spring orders

tran46
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
comb 2

p

5.2. SVM models

To verify the effectiveness of NPPS described in Section

4.1, we considered seven SVMs trained with randomly

selected patterns. They are denoted as R*-SVM where ‘*’

indicates the ratio of random samples drawn without

replacement. S-SVM denotes the SVM trained with the

patterns selected by NPPS (see Table 3). Each model was

trained and evaluated using five-fold cross-validation. The

number of neighbors (k) of NPPS, was set to 4 according to

guidelines suggested in Shin and Cho (2003c). All the SVM

models in Table 3 use the same hyper-parameter values to

equalize their effects. The RBF kernel in Eq. (2) was used

with parameter s set to 0.5, and the misclassification

tolerance parameter C in Eq. (1) set to 10. These parameter

settings were determined through a trial-error approach over

the combination of C and s, ({0.1, 1, 10, 100, 1000}!
{0.25, 0.5, 1, 2, 3}), using ten fold cross-validation

performance. The class imbalance problem addressed in

Section 4.2 appeared in all the eight datasets. The sets

selected by random sampling showed the common class

ratio of m1:m2Z90.6:9.4%. That is also the same ratio as the

original training set since we conducted a stratified random

sampling by the target variable. The training set reduced by

NPPS, however, showed a different class ratio, m1:m2Z
65.5:34.5% (Z5810:3061) on average. Even though NPPS

improved the ratio of the smaller class from 9.4% up to

34.5%, the imbalance problem still remained. Thus, the

different misclassification costs, C1 and C2 were set on

every dataset as they were defined in Eq. (7). C1 and C2 of

R*-SVM were 0.94 (Z0.094!10) and 9.06(Z0.906!10),

respectively. On the other hands, those of S-SVM were

3.45(Z0.345!10) and 6.55(Z0.655!10).
5.3. Performance measurements

The performances of the eight SVM response models

were compared in terms of three criteria: accuracies lift

chart and computational efficiency.
Table 3

SVM models: the number of patterns selected from NPPS slightly varies

with the given set of each fold, thus it is represented as an average over the

five reduced training sets

Model No. of training

data

Training data

R05-SVM 4060 5% random samples

R10-SVM 8121 10% random samples

R20-SVM 16244 20% random samples

R40-SVM 32490 40% random samples

R60-SVM 48734 60% random samples

R80-SVM 64980 80% random samples

R100-SVM 81226 100% random samples

S-SVM Avg. 8871 The patterns selected by NPPS



Table 4

Confusion Matrix: FP, FN, TP and TN means false positive, false negative,

true positive, and true negative in due order where TP and TN are the

correct classification

Classified

class 1

(non-respondent)

class 2

(respondent)

Actual class 1(non-

respondent)

M11 (TN) m12 (FP) m1

class 2

(respondent)

M21 (FN) m22 (TP) m2
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5.3.1. Accuracies

The accuracy of a classifier can be described by a

confusion matrix (see Table 4). Let mij denote the number of

patterns, which were classified as class j but whose actual

class label is class i. A most widely used accuracy

measurement is an Average Correct-classification Rate

(ACR), which is defined as:

Average Correct classification Rate ðACRÞ Z
TN CTP

M

Z
m11 Cm22

M
:

But, the average correct-classification rate can be

misleading in an imbalanced dataset where the heavily

represented class is given more weight. Receiver Operating

Characteristic (ROC) analysis is usually performed as well

(Provost & Fawcett, 1997), which measures the classifier’s

accuracy over the whole range of thresholds in terms of

Specificity (Sp) and Sensitivity (Se) (SAS Institute Inc.,

1998). They are defined as

Specificity ðSpÞ Z
TN

TN CFP
Z

m11

m11 Cm12

Z
m11

m1

;

Sensitivity ðSeÞ Z
TP

FN CTP
Z

m22

m21 Cm22

Z
m22

m2

:

Since we fixed the classification threshold at 0 in the

SVM decision function Eq. (5), however, only one pair of

Sp and Se per model was available. Thus, here the ROC plot

has the eight pairs of (1-Sp, Se) scattered for their

comparison. Another accuracy measure, Balanced Cor-

rect-classification Rate (BCR), was defined so as to

incorporate Sp and Se into one term. BCR enforces balance

in the correct classification rate between two classes. It is

defined as

Balanced Correct 	 classification Rate ðBCRÞ Z Sp$Se

Z
m11

m1


 �
$

m22

m2


 �
:

Fig. 6. Accuracies: accuracy of R*-SVM is depicted as a solid circle while

that of S-SVM is represented as a dotted reference line.
5.3.2. Lift chart analysis of response rate and profit

Once the test patterns were sorted in a descending order

according to f ððxÞ, two kinds of lift charts were investigated.
One is for response rate, and the other for profit. From the

business point of view, the ultimate goal of direct mailing is

to maximize the profit rather than the response rate itself

(Malthouse, 1999). Thus we evaluated the eight competing
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SVM models from a profit aspect as well. For profit lift chart

analysis, another target variable of DMEF4 dataset,

TARGDOL (target mailing dollar), was associated with

the rank of f ððxÞ, which indicates the purchase dollar amount

during the test period. Two measurements were used in

evaluating lift charts. One is the average response rate or

profit in the top decile, ‘Top-Decile’. This measures how

well two models identifies a small number of highly likely

respondents. The other is ‘Weighted-Decile’ defined as
Weighted 	 Decile

Z
f1:0!d1 C0:9!d2 C0:8!d3 /C0:1!d10g

1:0 C0:9 C0:8 C/C0:1
;

where di, (iZ1,.,10) is a cumulative average response rate

or profit till ith decile in the lift table. This measures how

well the model identifies a larger number of likely

respondents in a larger rollout. A similar evaluation by

two measurements has been adopted in data mining

competitions (Ling & Li, 1998).
5.3.3. Computational efficiency

The evaluation was done in several measures: the

number of training patterns, training time, and the number

of support vectors, and recall time. The number of patterns

directly influences the time complexity. The training time of

SVM increases in proportion to the cube of the number of

training patterns (in case of standard QP solver). The recall

time increases linearly to the number of support vectors.

Training time is of important concern to a direct marketer

who is in charge of SVM modeling with a huge amount of

data, while recall time is critical when the model is deployed

to work in a real-time application such as fraud detection.

Although recall time is not a primary issue in response

modeling, we measured it for potential use to another

application.
Fig. 7. Lift chart of cumulative average response rate: R*-SVMs are depicted dotte

is represented as a solid-dot line.
5.4. Results

We now give the experimental results of the eight SVM

response models in the order of accuracies, lift chart

analysis, and computational efficiency.

Fig. 6 shows how the eight SVM response models

performed in terms of ACR, ROC, and BCR. First, Fig. 6(a)

indicates a mean ACR over five-fold cross-validation of

each SVM model. For the sake of convenience, R*-SVM is

briefly denoted as ‘R*’ in the figure. Sampling more patterns

results in higher ACR, but the increasing rate is not very

high. From R05 to R100, only about 3.52% (Z{0.8447K
0.8160}/0.8160!100%) of accuracy was gained from

1.900% (Z{100K5}/5!100%) data increase. The

S-SVM achieved ACR in the range of those from R60-

R80. However, we could not make good evaluation of the

model comparison using ACR because of class imbalance.

In Fig. 6(b), the eight pairs of (1-Sp, Se) were plotted in

ROC chart. A point located upper left corresponds to a

better performance. The ACR is effectively broken down

into two classwise accuracies, Sp for non-respondents (class

1) and Se for respondents (class 2). The Sps of the eight

SVM models are similar, while the Ses shows significant

differences. It should be noted that it is Se, accuracy for

respondents’ group, that is of greater importance to direct

marketers, since their primary goal is to identify the

respondents, not the non-respondents. S-SVM achieved a

best Se, better than that of even R100-SVM. Fig. 6(c) shows

the BCRs of the eight SVM response models. BCR clearly

distinguished the accuracies of the eight SVM models.

Sampling more data results in a larger BCR also. The BCR

of S-SVM is almost same as that of R100-SVM.

Fig. 7 illustrates the lift chart of the cumulative average

response rate. The base average response rate of DMEF4

dataset was 9.4%, which is represented as a solid horizon at

the bottom of the chart. Two observations can be made.

First, all the SVM response models did better than the base

response rate. Second, more training patterns lead to a better
d lines but among them R10-SVM is represented as a dash-dot line. S-SVM



Fig. 8. Top-Decile response rate and Weighted-Decile response rate: R*-SVM is depicted as a bar while S-SVM is represented as a dotted reference line.
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lift of the response rate. R100-SVM showed the best

performance while the R05-SVM showed the worst. Models

trained with more patterns showed a steeper lift in the first

several deciles. The lift curve of S-SVM was almost

identical to that of R80-SVM. It is illuminating to compare

the curve shape of S-SVM with that of R10-SVM

represented as a dash-dot line. Although the two models

had almost the same number of training patterns, they were

significantly different in the lift performance. Fig. 8 shows

the results of the lift measures described in Section 5.3.2:

Top-Decile and Weighted-Decile. From the top 10

percentile of customers, R100-SVM obtained 51.45%

response rate (see, Fig. 8(a)). The Top-Decile response

rate of S-SVM was 48.65%, which is almost equal to that of

R80-SVM, 48.79%. Fig. 8(b) shows the results of

Weighted-Decile response rates. R100-SVM still did best,

and S-SVM and R80-SVM came second. But the gap

between the first and the second was not so big as in the

Top-Decile response rate.

Now, Figs. 9 and 10 describe the lift chart results in terms

of the profit. The average purchase dollar amount of

DMEF4 was $48 when averaged over the respondents’

group, but $4.5 when averaged over all customers. The

horizon line in the lift chart of Fig. 9 represents the $4.5 base
Fig. 9. Lift chart of cumulative average profit: R*-SVMs are depicted dotted lin

represented as a solid-dot line.
average profit. All the models did better than the base

average profit and an SVM with more training pattern

produced a higher profit in the first several deciles. But in

terms of the profit lift, S-SVM showed a performance

comparable to that of R100-SVM. It is also remarkable that

the profit lifts of R100-SVM or S-SVM outperformed those

of Malthouse who got the scores by fitting the problem as a

regression one (Malthouse, 2001). For the cumulative

average profit (dollars) of the second decile, Malthouse’

regression model recorded $12–$15 while the SVM

classification model recorded $17–$18. Fig. 10 illustrates

the Top-Decile profit and the Weighted-Decile profit. The

Top-Decile profit and the Weighted-Decile profit of R100-

SVM were $23.78 and $12.99, respectively, and those of

R80-SVM were $22.25 and $12.56. S-SVM was $23.53 in

the Top-Decile profit and $12.77 in the Weighted-Decile

profit, which were slightly less than those of R100-SVM but

more than those of R80-SVM.

Finally, Table 5 shows the results of computational

efficiency measures in columns: the number of training

patterns, training time, the number of support vectors, its

proportion to training patterns, and recall time. We used

OSU SVM Classifier Matlab Toolbox, which is a hybrid

algorithm of SMO and SVMlight, and is known as one of
es but among them R10-SVM is represented as a dash-dot line. S-SVM is



Fig. 10. Top-Decile profit and Weighted-Decile profit: R*-SVM is depicted as a bar while S-SVM is represented as a dotted reference line.

Table 5

Computational efficiency of SVM response models

Num. of training

patterns

Training

time (s)

Num. of SVs

(proportion)

Recall

time (s)

R05 4060 13.72 1975 (48.65%) 17.22

R10 8121 56.67 4194 (51.64%) 31.39

R20 16,244 149.42 7463 (45.94%) 56.17

R40 32,490 652.11 14,967 (46.07%) 112.08

R60 48,734 1,622.06 22,193 (45.54%) 166.11

R80 64,980 2,906.97 28,968 (44.58%) 237.31

R100 81,226 4,820.06 35,529 (43.74%) 381.31

S 8871 68.29 6,624 (74.67%) 45.13
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the fastest solvers (Hearst, Schölkopf, Dumais, Osuna, &

Platt, 1997). Training time increased proportionally to the

number of training patterns with the peak of 4820 (sec) for

R100-SVM. On the other hand, S-SVM took only 68 (sec).

The total time of S-SVM was 129 (sec), when the NPPS

running time, 61 (sec), was included. Note that SVM

training is usually performed several times to find a set of

optimal parameters, but the pattern selection is performed

only once. In the fourth column, the number of support

vectors is represented. At most, half of the random sampling

training patterns were support vectors while 74% of the

NPPS selected training patterns were support vectors. The

result confirms that the NPPS’ selection of training patterns

was more efficient. Recall time was proportional to the

number of support vectors as shown in the last column.

Overall, the computational efficiency of S-SVM was

comparable to that of R10-SVM or R20-SVM.
Fig. 11. How well S-SVM performed relative to R*-SVMs.
6. Conclusions and discussions

In this paper, we introduced SVM, a powerful

classification model, and practical difficulties when apply-

ing it to response modeling in direct marketing: large

training data, class imbalance and binary SVM output.

We then proposed how to alleviate and solve those

difficulties: informative sampling, different costs for

different classes, and use of distance to decision boundary.
In the experiments, we showed that the proposed solutions

worked quite well. In particular, several models were

trained and evaluated in terms of accuracies, lift chart

analysis and computational efficiency. The SVM trained

with the patterns selected by proposed NPPS (S-SVM) were

compared with the ones trained with random samples (R*-

SVMs where ‘*’ indicates the sampling percentage). Fig. 11

summarizes the results in terms of various measures. The

horizontal bars in the figure shows the performance of

S-SVM relative to those of R*-SVMs in various measures.

S-SVM achieved the accuracies and uplifts comparable to

those of R80-SVM and R100-SVM with a computational

cost comparable to those of R10-SVM and R20-SVM.

Here, we would like to address some future research

works. First, in lift chart analysis, we used two measures,

Top-Decile and Weighted-Decile. The former is for

specifying a small number of customers in the top decile,

while the latter is for covering a larger number of customers

in all deciles. If the mailing depth is optimized through a

break-even analysis between revenue and cost, then more

accurate and practical evaluation measure needs to be

created. Second, the proposed pattern selection algorithm,

NPPS, can also be utilized to reduce the lengthy training

time of neural network classifiers. But it is necessary to add

extra correct patterns to the selected pattern set in order to

enhance the overlap region near the decision boundary

(Choi & Rockett, 2002; Hara & Nakayama, 2000).
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The rationale is that ‘overlap patterns’ located on the

‘wrong’ side of the decision boundary cause the MLP

training to take a longer time. Since the derivatives of the

back-propagated errors are evaluated at those patterns, the

derivatives are very small if they are grouped in a narrow

region on either side of the decision boundary. By means of

adding extra correct patterns, however, the network training

converged faster. Third, the current version of NPPS works

for classification problems only, thus is not applicable to

regression problems. In a regression problem, the patterns

located away from others, such as outliers, are less

important to learning. Thus, a straightforward idea would

be to use the mean (m) and variance (S) of k nearest

neighbors’ outputs. A pattern having a small value of S can

be replaced by m of its neighbors and itself. That is, kC1

patterns can be replaced by one pattern. On the contrary, a

pattern having a large value of S can be totally eliminated,

and its neighbors will be used for the next pattern searching.

A similar research was conducted in (Shin & Cho, 2001)

based on ensemble neural network, but more extended study

based on k nearest neighbors is still under consideration.

Regression NPPS will also be helpful for direct marketing

problems with large datasets.
References

Almeida, M. B., Braga, A., & Braga, J. P. (2000). SVM-KM: Speeding

SVMs learning with a priori cluster selection and k-means Proceedings

of the sixth brazilian symposium on neural networks pp. 162–167.

Bentz, Y., & Merunkay, D. (2000). Neural networks and the multinomial

logit for brand choice modeling: A hybrid approach. Journal of

Forecasting, 19(3), 177–200.

Bounds, D., & Ross, D. (1997). Forecasting customer response with neural

networks. Handbook of neural computation, G6.2, 1–7.

Byun, H., & Lee, S. (2002). Applications of support vector machines for

pattern recognition: A survey International workshop on pattern

recognition with support vector machines (SVM2002), lecture notes in

computer science (LNCS 2388), Niagara Falls, Canada pp. 213–236.

Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental

support vector machine learning Advances in neural information

processing systems, Vol. 13. Cambridge MA: MIT Press pp. 409–415.

Cheung, K.-W., Kwok, J. K., Law, M. H., & Tsui, K.-C. (2003). Mining

customer product rating for personalized marketing. Decision Support

Systems, 35, 231–243.

Chiu, C. (2002). A case-based customer classification approach for direct

marketing. Expert Systems with Applications, 22, 163–168.

Choi, S. H., & Rockett, P. (2002). The training of neural classifiers with

condensed dataset. IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Cybernetics, 32(2), 202–207.

Coenen, F., Swinnen, G., Vanhoof, K., & Wets, G. (2000). The

improvement of response modeling: Combining rule-induction and

case-based reasoning. Expert Systems with Applications, 18, 307–313.

Colombo, R., & Jiang, W. (1999). A stochastic RFM model. Journal of

Interactive Marketing, 13(3), 1–12.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support

vector machines and other kernel-based learning methods. Cambridge:

Cambridge University Press.

Deichmann, J., Eshghi, A., Haughton, D., Sayek, S., & Teebagy, N. (2002).

Application of multiple adaptive splines (MARS) in direct response

modeling. Journal of Interactive Marketing, 16(4), 15–27.
Dumais, S. (1998). Using SVMs for text categorization. IEEE Intelligent

Systems , 21–23.

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting

algorithm Proceedings of the thirteenth international conference on

machine learning pp. 148–156.

Ha, K., Cho, S., MacLachlan, D. (2005) Response models based on bagging

neural networks. Submitted for publication. Journal of Interactive

Marketing 19(1), 17–30.

Hara, K., & Nakayama, K. (2000). A training method with small

computation for classification Proceedings of the IEEE-INNS-ENNS

international joint conference, Vol. 3 pp. 543–548.

Haughton, D., & Oulabi, S. (1997). Direct marketing modeling with CART

and CHAID. Journal of Direct Marketing, 11(4), 42–52.

Hearst, M. A., Schölkopf, B., Dumais, S., Osuna, E., & Platt, J. (1997).

Trends and controversies—support vector machines. IEEE Intelligent

Systems, 13, 18–28.

Heisele, B., Poggio, T., Pontil, M. (2000). Face detection in still gray

images, Technical report AI memo 1687, MIT AI Lab.

Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression.

London: Wiley.

Japkowicz, N. (2000). Learning from imbalanced data sets: A comparison

of various strategies AAAI workshop on learning from imbalanced data

sets. Menlo Park, CA: AAAI Press.

Joachims, T. (1998). Text categorization with support vector machines:

Learning with many relevant features Proceedings of 10th European

conference on machine learning pp. 137–142.

Lee, K. K., Gunn, S. R., Harris, C. J., & Reed, P. A. S. (2001). Classification

of imbalanced data with transparent kernels Proceedings of INNS-

IEEE international joint conference on neural networks pp. 2410–2415.

Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems

and solutions Proceedings of ACM SIGKDD international conference

on knowledge discovery and data mining (KDD-98) pp. 73–79.

Liu, C. L., & Nakagawa, M. (2001). Evaluation of prototype learning

algorithms for nearest-neighbor classifier in application to handwritten

character recognition. Pattern Recognition, 34, 601–615.

Lyhyaoui, A., Martinez, M., Mora, I., Vazquez, M., Sancho, J., &

Figueiras-Vaidal, A. R. (1999). Sample selection via clustering to

construct support vector-like classifiers. IEEE Transactions on Neural

Networks, 10(6), 1474–1481.

Malthouse, E. C. (1999). Ridge regression and direct marketing scoring

models. Journal of Interactive Marketing, 13(4), 10–23.

Malthouse, E. C. (2001). Assessing the performance of direct marketing

models. Journal of Interactive Marketing, 15(1), 49–62.

Malthouse, E. C. (2002). Performance-based variable selection for scoring

models. Journal of Interactive Marketing, 16(4), 10–23.

Moghaddam, B., & Yang, M. H. (2000). Gender classification with support

vector machines Proceedings of international conference on pattern

recognition, Barcelona, Spain, 2000, and also appeared in proceedings

of 4th IEEE international conference on automatic face and gesture

recognition, Grenoble, France pp. 306–311.

Moutinho, L., Curry, B., Davies, F., & Rita, P. (1994). Neural network in

marketing. New York: Routledge.

Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector

machines: An application to face detection Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition pp. 130–136.

Platt, J. C. (1999). Fast training of support vector machines using

sequential minimal optimization Advances in kernel methods: Support

vector machines. Cambridge, MA: MIT press pp. 185–208.

Pontil, M., & Verri, A. (1998). Properties of support vector machines.

Neural Computation, 10, 955–974.

Potharst, R., Kaymak, U., Pijls W. (2001). Neural networks for target

selection in direct marketing, provided by Erasmus Research Institute

of Management (ERIM), Erasmus University Rotterdam in its series

Discussion Paper with number 77, http://ideas.repec.org/s/dgr/eureri.

html.

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa


H.J. Shin, S. Cho / Expert Systems with Applications 30 (2006) 746–760760
Provost, F., & Fawcett, T. (1997). Analysis and visualization of classifier

performance: Comparison under imprecise class and cost distributions

Proceedings of third international conference on knowledge discovery

and data mining. Menlo Park, CA: AAAI press pp. 43–48.

SAS Institute Inc. (1998). Enterprise mining premier.

Sen, A., & Srivastava, M. (1990). Regression analysis: Theory, method, and

applications, (Springer texts in statistics). New York: Springer.

Schölkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in kernel

methods: Support vector learning. Cambridge, MA: MIT press.

Schölkopf, B., Burges, D., & Vapnik, V. (1995). Extracting support data

for a given task Proceedings of first international conference on

knowledge discovery and data mining. Menlo Park, CA: AAAI press

pp. 252–257.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support

vector machines, regularization, optimization, and beyond. Cambridge,

MA: MIT press.

Shin, H. J., & Cho, S. (2001). Pattern selection using the bias and variance

of ensemble. Journal of the Korean Institute of Industrial Engineers,

28(1), 112–127.

Shin, H. J., Cho, S. (2002). Pattern selection for support vector classifiers,

The third international conference on intelligent data engineering and

automated learning (IDEAL), lecture notes in computer science (LNCS

2412), Manchester, UK, pp. 469–474.

Shin, H. J., & Cho, S. (2003a). Fast pattern selection for support vector

classifiers Proceedings of the seventh Pacific-Asia conference on

knowledge discovery and data mining (PAKDD), Lecture notes in

artificial intelligence (LNAI 2637), Seoul, Korea pp. 376–387.

Shin, H.J., Cho, S. (2003). Fast pattern selection algorithm for support

vector classifiers: Time complexity analysis, The fourth international
conference on intelligent data engineering and automated learning

(IDEAL), lecture notes in computer science (LNCS 2690), Hong Kong,

China, pp. 1008–1015.

Shin, H. J., & Cho, S. (2003c). How many neighbors to consider in pattern

pre-selection for support vector classifier? Proceedings of the

international joint conference on neural networks (IJCNN), Portland,

U.S.A. pp. 565–570.

Suh, E. H., Noh, K. C., & Suh, C. K. (1999). Customer list segmentation

using the combined response model. Expert Systems with Applications,

17(2), 89–97.

The Direct Marketing Association. http://www.the-dma.org/dmef/dmefd-

set.shtml.

Vapnik, V. (1999). The nature of statistical learning theory (2nd ed.).

Berlin: Springer.

Viaene, S., Baesens, B., Van den Poel, D., Dedene, G., & Vanthienen, J.

(2001a). Wrapped input selection using multilayer perceptrons for

repeat-purchase modeling in direct marketing. International Journal of

Intelligent Systems in Accounting, Finance & Management, 10, 115–

126.

Viaene, S., Baesens, B., Van Gestel, T., Suykens, J. A. K., Van den Poel, D.,

Vanthienen, J., et al. (2001b). Knowledge discovery in a direct

marketing case using least squares support vector machines. Inter-

national Journal of Intelligent Systems, 16, 1023–1036.

Zahavi, J., & Levin, N. (1997a). Issues and problems in applying neural

computing to target marketing. Journal of Direct Marketing, 11(4), 63–

75.

Zahavi, J., & Levin, N. (1997b). Applying neural computing to target

marketing. Journal of Direct Marketing, 11(4), 76–93.

http://www.the-dma.org/dmef/dmefdset.shtml
http://www.the-dma.org/dmef/dmefdset.shtml

	Response modeling with support vector machines
	Introduction
	Related work
	Various methods applied to direct marketing
	Pattern selection
	Class-balancing
	Scoring

	Support vector machines and critical training patterns
	Support vector machines for response modeling
	Large training dataset
	Class imbalance
	Getting scores from an SVM classifier

	Experiments
	Dataset
	SVM models
	Performance measurements
	Results

	Conclusions and discussions
	References


