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Abstract

In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems,
graph edges can represent different relationships such as protein–protein interactions, genetic interactions, or co-participation in a pro-
tein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein function. How-
ever, since different graphs contain partly independent and partly complementary information about the problem at hand, one can
enhance the total information extracted by combining all graphs. In this paper, we propose a method for integrating multiple graphs
within a framework of semi-supervised learning. The method alternates between minimizing the objective function with respect to net-
work output and with respect to combining weights. We apply the method to the task of protein functional class prediction in yeast. The
proposed method performs significantly better than the same algorithm trained on any single graph.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In bioinformatics, many types of genomic data are fre-
quently represented by using graphs of which nodes corre-
spond to genes or proteins, and edges correspond to
different relationships such as physical interactions of pro-
teins (Schwikowski, Uetz, & Fields, 2000; Uetz et al., 2000;
von Mering et al., 2002), gene regulatory relationships
(Ihmels et al., 2002; Lee et al., 2002; Segal et al., 2003),
or similarities between protein sequences (Yona, Linial,
& Linial, 1999). One application using a graph representa-
tion is the prediction of protein functional class. It can be
described as a binary-class classification problem on an
undirected graph (see Fig. 1). A protein of known class is
labeled either by ‘+1’ or ‘�1’ while a protein yet unknown
its class is marked as ‘?’. The goal is to predict the class of
unlabeled proteins relying on similarities between nodes.
Prediction of protein functional class has been studied by
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means of various methods such as diffusion kernel (Tsuda
& Noble, 2004), majority vote (Hishigaki, Nakai, Ono,
Tanigami, & Takagi, 2001; Schwikowski et al., 2000),
graph-based (Vazquez, Flammini, Maritan, & Vespignani,
2003), Bayesian (Deng, Chen, & Sun, 2003), and discrimi-
native learning methods (Lanckriet, Deng, Cristianini, Jor-
dan, & Noble, 2004a; Vert & Kanehisa, 2002). There can
exist multiple descriptions of graphs for the same set of
genes or proteins. For instance, nodes of yeast proteins
can be connected in many different ways based on hetero-
geneous information such as protein–protein interactions,
or genetic interactions, or co-participation in a protein
complex, etc. Different graph sources are likely to contain
partly independent and partly complementary information
about the problem at hand. Thus, one can enhance the
total information extracted by combining all graphs.
Recently, there have arisen several methods for integrating
heterogeneous data sources in bioinformatics. Most of
them are based on kernel methods which represent data
by means of kernel matrices defined by similarities between
pairs of genes or proteins (for the kernel methods, refer to
Schölkopf & Smola, 2002). Kernel matrices representing
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Fig. 1. The functional class prediction on a protein network graph: a
protein of known class is labeled either by +1 or �1, and edges represent
similarities between proteins. The task is to predict class of unlabeled
proteins marked as ‘?’.
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heterogenous data types are then combined into a single
matrix by various techniques. Lanckriet, De Bie, Cristia-
nini, Jordan, and Noble (2004c) exploit semi-definite pro-
gramming (SDP, see also Lanckriet, Cristianini, Bartlett,
El Ghaoui, & Jordan, 2004b) techniques to reduce the
problem of finding optimizing kernel combinations to a
convex optimization problem. This SDP-based approach
yields satisfactory results when performed on genome-wide
data sets, including amino acid sequences, hydropathy pro-
files, gene expression data, and known protein–protein
interactions. On the other hand, Kato, Tsuda, and Asai
(2005) differentiate the worth of data sources such as
‘expensive’, which is data that is informative but difficult
to obtain, and ‘cheap’, which is data that is less informative
but abundantly available. Since the kernel matrix derived
from the expensive data often has missing entries, they
attempt to complete them using multiple cheap data. They
use an expectation-maximization (EM) algorithm to simul-
taneously optimize the combining weights of data sources
and the missing entries of the incomplete kernel matrix
(for the methodology about kernel matrix completion,
refer to Tsuda, Akaho, & Asai (2004)). This EM-based
method shows promising results when tested on supervised
protein network inference and protein superfamily classifi-
cation. The problem of multiple data sources (not only lim-
ited to graph representation) is often described as ‘‘data
fusion,” which is intensely dealt with in the chapter 11–13
of the recent book of Schölkopf, Tsuda, and Vert (2004).
Other methods related to integration of data sources can
be found in Pavlidis, Weston, Cai, and Grundy (2001), Vert
and Kanehisa (2002), and Lanckriet et al. (2004a).

In the meantime, when data is represented as a graph, a
more direct state-of-the-art in learning methods is semi-
supervised learning. In semi-supervised learning, the
labeled nodes provide information about the decision
function, while the unlabeled nodes serve to reveal the
structure of the data or data manifold by providing
additional information (Nigam, McCallum, Thrun, &
Mitchell, 1998; Chapelle, Schölkopf, & Weston, 2003b;
Seeger, 2000; Zhou, Bousquet, Lal, Weston, & Schölkopf,
2004a). However, the problem of utilizing multiple data
sources has yet to be explored in the framework of semi-
supervised learning. In this paper, we propose a method
for integrating multiple graphs within a framework of
semi-supervised learning. The method alternates between
minimizing the objective function with respect to network
output and with respect to combining weight. We apply
the method to the task of protein functional class predic-
tion in yeast provided by the MIPS Comprehensive Yeast
Genome Database (CYGD-mips.gsf.de/proj/yeast). The
proposed method performs significantly better than the
same algorithm trained on any single graph.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce semi-supervised learning
and review the recent literature. Section 3 gives a detailed
explanation of our proposed method. In Section 4, we
show experimental results. We conclude in Section 5.
2. Semi-supervised learning

Let G ¼ ðV ;EÞ denote a weighted graph, where
V ¼ fx1; x2; . . . ; xng is the vertex set and E is the edge set.
A weight matrix associated with E, denoted as W,
represents the magnitude of strength of linkage. W could
be simply regarded as a non-negative similarity (or an affin-
ity) matrix. The more similar xi–xj, the larger a value of wij.
Now suppose that p vertices of V are labeled ðx1; y1Þ;
ðx2; y2Þ; . . . ; ðxp; ypÞ, where yi 2 f�1; 1g, and the remaining
q vertices xpþ1; xpþ2; . . . ; xpþq¼n are unlabeled. And accord-
ingly, let us define P ¼ f1; 2; . . . ; pg for the former and
Q ¼ fp þ 1; p þ 2; . . . ; ng for the latter. The goal of semi-
supervised learning is to label those unlabeled vertices by
exploiting the structure of the graph under the assumption
that a label of an unlabeled vertex is more likely to be that
of more adjacent or more strongly connected vertex. To
formulate the idea, let us define a function f : V ! R on
G that estimates labels with this property. Then, (A) a label
fi or f ðxiÞ estimated from f should not be too different from
fj’s of adjacent vertices (B) under the constraints fi � yi;
i ¼ 1; . . . ; p. One can obtain f by minimizing the following
quadratic function:X
i�j

wijðfi � fjÞ2 þ l
X
ðfi � yiÞ

2
; ð1Þ

where i � j means xi and xj are adjacent. The first term
implies the ‘‘smoothness” of (A) and the second term cor-
responds to the ‘‘loss function” of (B). Alternative func-
tions of smoothness or loss can be found in Chapelle,
Weston, and Schölkopf (2003a). For technical convenience,
a condition

P
fi ¼ 0 can be added to Eq. (1) (Belkin &

Niyogi, 2003a, Belkin, Matveeva, & Niyogi, 2003b). Very
often, the quadratic problem of Eq. (1) is represented in
terms of matrix

min
f

f TLf þ l ðf � yÞTðf � yÞ; ð2Þ

where y¼ ½yT
P yT

Q�
T
; yp 2 f�1;1g; yq 2 f0g; p 2 P ; q2Q,

and f ¼ ½f T
P f T

Q�
T
; f 2R. l is a parameter that trades off

loss versus smoothness. The Laplacian is defined as L¼
D�W where D¼ diagðdiÞ, di ¼

P
jwij. Instead of L, a ‘nor-

malized Laplacian’, eL ¼D�
1
2LD

1
2 can be used which has
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many nice properties (Chung, 1997). The solution to the
quadratic problem can be obtained in a form

f ¼ lfLþ lIg�1
y;

where I is an identity matrix.
There have been various semi-supervised learning algo-

rithms, such as spectral methods and clustering (Belkin &
Niyogi, 2004; Chapelle et al., 2003a; Joachims, 2003; Ng,
Jordan, & Weiss, 2001; Seeger, 2000), graph s–t mincuts
(Blum & Chawla, 2001) or multi-way cuts (Kleinberg &
Tardos, 1999), co-training (Blum & Mitchell, 1998), ran-
dom walks (Szummer & Jaakkola, 2001; Zhou & Schölk-
opf, 2004b; Zhu, Ghahramani, & Lafferty, 2003), and
diffusion kernels (Kandola, Shawe-Taylor, & Cristianini,
2002; Kondor & Lafferty, 2002; Smola & Kondor, 2003).
See also ‘transductive SVM’ introduced by Vapnik (1998)
which were later refined by Bennett (1999) and Joachims
(1999).
3. Method of combining graphs

Given a single graph G, we can predict fq with (2) after
transforming G into a Laplacian L or a normalized Lapla-
cian eL. Now, consider the case where a set of graphs
G ¼ fG1;G2; . . . ;Gkg is given, each of which containing
different aspects of the data (see Fig. 2. To integrate multi-
ple graphs, we consider parameterized combinations of
graphs. In particular, we form the linear combination of
Laplacians

LðbÞ ¼
XK

k¼1

bkLk; ð3Þ
Fig. 2. Multiple graphs: consider the case where a set of graphs
G ¼ fG1;G2; . . . ;Gkg is given, each of which depicts a different aspect of
the data. Each graph can solely predict the label of the unlabeled nodes
marked as ‘?’, depending on its own similarity measure between nodes.
However, since different graphs contain partly independent and partly
complementary pieces of information about the problem at hand, one can
enhance the total information extracted about the problem by combining
those graphs.
where the weights bk are constrained to be positive to as-
sure that each Laplacian contributes to prediction of f .
Inserting (3) into (2), we obtain

min
b;f

XK

k¼1

bkf TLkf þ lðf � yÞTðf � yÞ;

s:t: b P 0

ð4Þ

where b ¼ ½b1b2 . . . bk�
T. However, since each Lk is positive

definite, the value b ¼ 0 is trivially optimal. This can be
avoided with the additional constraint bT1 ¼ d, which
yields

min
b;f

XK

k¼1

bkf TLkf þ lðf � yÞTðf � yÞ;

s:t: b P 0; bT1 ¼ d;

ð5Þ

where 1 ¼ ½1 1 . . . 1�T. Nonetheless, the solution for b may
still be more sparse than desired in that case. Namely, we
always get only one non-zero weight, and all the others
are zero, b ¼ ½0 0 . . . d 0�T. To get a reasonable set of
weights, we consider to add an extra regularizer such that
the term f >LðbÞf penalizes all the directions more equally.
If the eigenvalues of LðbÞ are k1; . . . ; kn, our aim is to
regularize LðbÞ such that all the eigenvalues become less
variant. One way to achieve this is to penalize large eigen-
values so that they are pulled toward zero. We design the
regularization term as

� log detðI � LðbÞÞ ¼ �
Xn

i¼1

logð1� kiÞ:

Other choices might be possible, but our basic idea is to
regularize the eigenvalues instead of the weights bk’s. Then,
the optimization problem becomes

min
b;f

Rðb; f Þ ¼
XK

k¼1

bkf TLkf � log det I �
XK

k¼1

bkLk

 !
þ lðf � yÞTCðf � yÞ;

s:t: b P 0; bT1 ¼ d;

ð6Þ

where d < 0:5. In the third term corresponding to the loss
function, a diagonal cost matrix C is incorporated which
allows different misclassification costs, i.e., c1 for yi ¼ þ1,
and c2 for yj ¼ �1, i; j 2 P .

The objective function of (6) is not jointly convex, but
has nice properties: by fixing b, the objective function is
convex with respect to f , while conversely, fixing f it is con-
vex with respect to b. Now, we can jointly minimize the
objective function on b and f . We bisect the solution pro-
cess similar to ‘E-step’ and ‘M-step’ of EM algorithm, and
alternatively optimize both steps (Dempster, Laird, &
Rubin, 1977; McLachlan & Krishnan, 1997). Here, we
denote them instead as ‘b-step’ and ‘f -step,’ respectively.
The algorithm is presented in Fig. 3.



:

Fig. 3. Algorithm: by alternating ‘b-step’ and ‘f -step’, the optimal
solution of the combining weights and the output can be found
simultaneously.
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3.1. Solution of [f -step]

When b is fixed, the solution f can be obtained by

oRðb; f Þ
of

����
ðb¼biÞ

¼
XK

k¼1

bkLk þ lC

( )
f � lCy ¼ 0;

where C is a ðn� nÞ diagonal cost matrix. Standard linear
algebra leads to a solution of the form

f ¼ lC
XK

k¼1

bkLk þ lC

( )�1

y: ð7Þ
3.2. Solution of [b-step]

To find the solution of b when given f , we use the gra-
dient descent method for minimizing Rðb; f Þ with respect to
b. The current bi is updated to biþ1 as follows:

biþ1 ¼ bi � aiPdbi; ð8Þ
where dbi is the gradient vector

dbi ¼ oRðb; f Þ
ob

����
ðf¼f i ;b¼biÞ

;

whose kth element is

oRðb; f Þ
obk

����
ðf¼f i ;b¼biÞ

¼ f TLkf þ tr I �
XK

j¼1

bjLj

 !�1

Lk

24 35:
ð9Þ

In (9), tr I �
PK

j¼1bjLj

� ��1

Lk

� �
is the derivative of

o
obk

log det I �
PK

k bkLk

� �� �
given by the following algebra.

Let A be a matrix of which each element is parameterized

with respect to t. The derivative of o
ot ðlog det AÞ can be

drawn by

o

ot
ðlog det AÞ ¼

X
i;j

o

oAij
ðlog det AÞ � oAij

ot
¼
X

i;j

A�1
ij

oAij

ot

ð10Þ
where
P

i;j
o

oAij
ðlog det AÞ ¼ o

oA ðlog det AÞ ¼ A�1. And if A

and B are symmetric, then
P

i;jAijBij ¼ tr AB½ �. Thus (10)
becomesX

i;j

A�1
ij

oAij

ot
¼ tr A�1 oA

ot

� �
:

By replacing A and t with ðI �
PK

k¼1bkLkÞ and bk, respec-
tively, we find the derivative

o

obk
log det I �

XK

k¼1

bkLk

 ! !
¼ tr I �

XK

j¼1

bjLj

 !�1

ð�LkÞ

24 35
Going back to (8), the projection matrix P is defined as

P ¼ I � 1

K
11T; ð11Þ

where 1 ¼ ½1 1 . . . 1�T. The matrix P enables the next solu-
tion of bi to satisfy the constraint bT1 ¼ d so that

ðbiþ1ÞT1 ¼ ðbi þrÞT1 ¼ d;

where r ¼ �dbi.
Since ðbiÞT1 ¼ d, r should satisfy

1Tr ¼ 0 ð12Þ

which implies r has to be projected onto an orthogonal
space to 1T. A general formula of orthogonal projection
to A when Ar ¼ 0 is

P ¼ I � ATðAATÞ�1A:

Eq. (11) results from specifying A with 1T in the formula.
With preconditioning of r with P, we now can assure (12)

1TðPrÞ ¼ 1TðI � 1ð1T1Þ�1
1TÞr ¼ 0:

The ai in (8) determines the learning rate during the update.
We begin with ai set to the maximum value under the con-
dition biþ1

k P 0; 8k, and gradually reduce the magnitude as
the iterations increase.

4. Experiments

4.1. Experimental design

Our goal is to determine functional classes of yeast pro-
teins. We used as a gold standard, the functional catalogue
provided by the MIPS Comprehensive Yeast Genome
Database (CYGD-mips.gsf.de/proj/yeast). The top-level
categories in the functional hierarchy produce 13 classes
(see Table 1). A protein can belong to several functional
classes. In a total of 6355 yeast proteins, however, only
3588 have class labels. The remaining yeast proteins have
uncertain function and are therefore not used in evalua-
tion. We dealt with the prediction problem as ‘one class-
versus-all others’ classification tasks, one for each func-
tional class. See Lanckriet et al. (2004b) for more detail.

The input is four different types of protein interaction
graphs with proteins as nodes and interactions as edges.



Table 1
13 CYGD functional classes

Classes

1 Metabolism
2 Energy
3 Cell cycle and DNA processing
4 Transcription
5 Protein synthesis
6 Protein fate
7 Cellular transportation and transportation mechanism
8 Cell rescue, defense and virulence
9 Interaction with cell environment

10 Cell fate
11 Control of cell organization
12 Transport facilitation
13 Others
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The graphs are represented as mostly binary matrices hav-
ing non-zero entry if there is interaction between the row
and column proteins, 0 otherwise. The followings are the
input matrices:

W 1: protein–protein interactions (MIPS physical
interactions),
W 2: genetic interactions (MIPS genetic interactions),
Fig. 4. The number of proteins available to learning: dark gray indicates
the number of proteins with no interaction in any of the graphs, hence
unavailable to learning. Light gray indicates the number of the proteins in
which there is no interaction in the specific graph but available in at least
one of the other graphs. These are thus not available to learning in the
specified graph but available to that of the combined graph. For each
graph, the number of proteins used for learning is depicted in white.

Fig. 6. ROC score for 13 functional protein classes: the height of the stem i
corresponds to an individual graph in order of such as L1, L2, L3, and L4, resp
combined graph Lcom outperforms any single Lk .
W 3: co-participation in a protein complex (determined
by tandem affinity purification, TAP), each entry is a
count of the number of times two proteins appear
together in a complex,
W 4: co-participation in a protein complex, each entry is
non-zero if and only if there is a bait-prey relationship.

There are proteins which show no interactions with others.
For instance, W 2 of Fig. 4 has 2769 (=1529 + 1240) pro-
teins with no interaction, thus only 819 (=3588 � 2769)
are available for semi-supervised learning. And no results
for the 2769 proteins remaining. Similarly, this situation
arises in other graphs when they are considered
individually.

In contrast, using a combined graph, a protein can be
used if it has at least one non-zero interaction from any
graph. It amounts to the size of the union of all proteins
with non-zero interaction in all graphs. In the problem at
hand, 1529 of 3588 proteins have no interactions in any
of the graphs. Consequently, 2059 (=3588 � 1529) proteins
are preserved for learning. Combining graphs is also
Fig. 5. ROC curve: protein functional class 3. The closer the curve follows
the left-hand border and then the top border of the ROC space, the more
accurate the classifier.

ndicates to the ROC score. Within each group of stems, a thinner stem
ectively while a thicker one corresponds to Lcom. Across the 13 classes, the



Fig. 7. Overall performance: (a)–(c) corresponds to ROC score, TP1FP
and TP10FP, respectively. The height of bars indicates the average value
of the measurements on fivefold CV repeated five times across 13 classes,
and the error bar indicates the standard error. Seeing the results of (a)–(c),
the combined graph yields a better performance. In (d), the proportion of
the colored bars indicates the relative weights of the different graphs when
combined. (a) ROC score, (b) TP1FP, (c) TP10FP and (d) weight. (For
interpretation of the references in colour in this figure legend, the reader is
referred to the web version of this article.)
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advantageous for proteins with non-zero interactions par-
ticularly when individual graphs cannot reach an accord
with each other.

All the matrices W k (k ¼ 1; . . . ; 4) were transformed to
‘normalized’ Laplacian Lk’s with dimensions of 1342, 819,
1079 and 1051, respectively. Individual Laplacians com-
posing the combined graph, columns and rows were zero-
padded up to 2059 after transformation. Hereafter, we
indicate each graph with Lk (k ¼ 1; . . . ; 4) and the com-
bined graph with Lcom.

The performance of Lcom was compared with those of
individual Lk’s with the receiver operating characteristic
(ROC) score, TP1FP, TP10FP, and error rate. The ROC
score is the area under ROC curve (see Fig. 5) that plots
true positive rate (sensitivity) as a function of false positive
rate (1-specificity) for differing classification thresholds
(Gribskov & Robinson, 1996; Hanley & McNeil, 1982).
It measures the overall quality of the ranking induced by
the classifier, rather than the quality of a single value of
threshold in that ranking. An ROC score of 0.5 corre-
sponds to random guessing, and an ROC score of 1.0
implies that the algorithm succeeded in putting all of the
positive examples before all of the negatives. TP1FP and
TP10FP are the rates of true positives at the point that
yields 1% and 10% false positive rate on the ROC curve,
respectively. Error rate is a conventional performance mea-
surement with a fixed value threshold. Fivefold cross-vali-
dation (CV) was conducted for every class, and repeated
five times in order to estimate the variance of the measure-
ment values.

4.2. Results

A typical ROC curve is shown in Fig. 5. The closer the
curve follows the left-hand border and then the top border
of the ROC space, the more accurate the classifier. The fig-
ure therefore illustrates that Lcom is more accurate than any
other single Lk. Fig. 6 presents the average ROC score of
each class on its test set when performing fivefold CV five
times. The height of the stem indicates to the ROC score.
Within each group of stems, a thinner stem corresponds
to an individual graph in due order, such as L1, L2, L3,
and L4, respectively while a thicker one to Lcom. Across
the 13 classes, the combined graph Lcom outperforms any
given single Lk. Overall, Lcom yields an ROC score of
0.8313 that surpasses all those of individual Lk’s, 0.7777,
0.7836, 0.7310, and 0.7238, respectively (see Fig. 7a). The
performances of TP1FP and TP10FP are depicted in
Fig. 7b and c. Among TP1FP’s of Lk’s, 26.87% of L2 is
the most comparable to 30.07% of Lcom, but the gap
between the best and the second best becomes larger in
TP10FP by 70.15% of Lcom and 61.22% of L2. In Fig. 7d,
the proportion of the colored bars indicates the relative
weights of the different graphs when combined. Fig. 8 pre-
sents the error rates of 13 classes. A dot stands for the error
rate of Lk, and the number beside it identifies the individual
such as k ¼ 1; . . . ; 4. The error rate of the combined graph
is depicted as a square. The performance of Lk differs ‘class
by class’, and the difference between the best and the worst,
which is represented as a line, changes significantly as well.
Therefore, it is not appropriate to put them in the order of
performance. Moreover, since the difference is also large a



Fig. 8. Error rate for 13 functional protein classes: a dot stands for the error rate of Lk , and the number beside it identifies the individual, k ¼ 1; . . . ; 4. The
difference between the best and the worst is represented as a line. The error rate of the combined graph is depicted as a square. The performance of Lk

differs ‘class by class’, and the difference changes significantly. On the other hand, the error rate of the combined graph is always lower than any of those of
individual graphs. Moreover, one does not need to take the risk involved in the choice of graphs that may lead to the worst performance in specific class.

Fig. 9. p-Value distribution of McNemar’s test: the smaller p-value
indicates a more statistically significant difference between the combined
graph versus any single graph, while a p-value of 1 indicates no statistical
difference between them. A pairwise test between the combined graph and
each of four graphs is conducted during five repetitions of fivefold cross-
validation for 13 classes, which amounts to 1300 (¼ 4� 5� 5� 13). For
most of 1300 experiments the combined graph outperforms the individual
graphs. In 504 out of 1300 McNemar’s tests, there is a statistically
significant difference between them (at a significance level of a ¼ 0:05).
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wrong choice of graph may lead to the worst performance
in specific class. On the other hand, the error rate of the
combined graph is always lower than any of those of indi-
vidual graphs. In addition, one does not need to take the
Table 2
Error rates of the combined graph: ‘Error A’ is an error rate for the proteins
combined graph

(%) Functional protein classes

1 2 3 4 5 6 7

Error A 16.32 8.23 17.08 11.39 7.92 14.42 8.

Error B 20.39 9.98 19.46 19.71 12.99 17.52 12.

‘Error B’ contains more proteins which are not available to an individual grap
than Error A, due to the relative lack of input information, it is nonetheless s
risk involved in the choice of graphs. To test the signifi-
cance of the difference between the combined graph and
individual ones, McNemar’s test was conducted (Diette-
rich, 1998). In principle, McNemar’s test is used to deter-
mine whether one learning algorithm outperforms
another on a particular learning task. This non-parametric
test could be seen as a Sign-Test in disguise. Fig. 9 shows
p-value distribution of McNemar’s test. The smaller
p-value indicates the better the combined graph is than
an individual graph, while a p-value of 1 means no statisti-
cal difference between them. A pairwise test between the
combined graph and each of four graphs is conducted dur-
ing five repetitions of fivefold cross-validation for 13 clas-
ses, which amounts to 1300 (¼ 4� 5� 5� 13). For most
of 1300 experiments the combined graph outperforms the
individual graphs. And in 504 out of 1300 McNemar’s
tests, there is a statistically significant difference between
them (significance level a ¼ 0:05).

To do the comparison justice, we have only taken into
consideration the proteins which are available to learning
both for an individual graph and for the combined graph.
For instance, when we compared Lcom with Lk, we reported
performance only on 1342 proteins (see Fig. 4). However,
in the combined graph, we are still able to obtain the results
for another 717 proteins – that is to say, the results of the
proteins which are not available in an individual graph but
available in the combined graph. Table 2 shows both error
rates of the combined graph, ‘Error A’ for the former and
‘Error B’ for the latter. Error B is slightly larger than Error
which are available to learning both for an individual graph and for the

Average

8 9 10 11 12 13

29 11.11 6.65 14.98 20.18 6.70 8.49 11.67

85 14.26 10.71 18.19 21.12 7.29 11.24 15.05

h but available to the combined graph. Although Error B is slightly larger
till a reasonable figure as an error rate.
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A, since it contains the proteins of which output is pro-
duced with fewer input graphs. Nonetheless, Error B values
are still reasonable.

5. Conclusion

In this paper, we have presented a method for combin-
ing multiple graphs within a framework of semi-supervised
learning. Similar to the EM algorithm, the method alter-
nates between minimizing the objective function with
respect to network output and with respect to combining
weight. When applied to the task of functional class predic-
tion of yeast proteins, the proposed method performed sig-
nificantly better than the same algorithm trained on any
single graph. The proposed method can also be used as
an alternative to the model selection process. Given a single
data source, it is likely to be represented in various ways by
means of different parameters, i.e., different similarity mea-
sures, leading to different performances. Thus, instead of
the tedious process of choosing one out of the candidate
parameters, one can combine them with this method.
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