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A B S T R A C T

Longitudinal data includes the information of samples in various timepoints. When applying machine learning
algorithms to this data, the use of up-to-date information will yield more accurate results. In this case, if the
labels are derived from the up-to-date information, out-of-date samples for which data has not yet been collected
are excluded from the prediction. To alleviate this problem, domain adaptation can be a method for the pre-
diction of out-of-date samples in that the method transforms those features similar with the up-to-date samples
and bridges to the use of labels. Especially, domain adversarial training methods with a gradient reversal layer
derive feature representation where samples in different domains appear to be one set so as to make the origin of
them indistinguishable. However, since existing methods focus on different data with heterogeneous features, by
considering that homogeneous features are continuously collected in longitudinal data, those need to be
improved for the out-of-date and up-to-date samples so that their features are exactly matched. Motivated by
this, we propose a method of domain adaptation, namely prospective domain adaptation, where the trans-
formation of the out-of-date features purposes to match the properties of the up-to-date features. Therefore, in
the proposed method, the out-of-date features are adapted to the manifold and distribution of the up-to-date
features so that two feature sets are implicitly and explicitly matched. The experimental results demonstrated
that the proposed method derives well-matched feature representation and outperforms comparative methods.

1. Introduction

Longitudinal data comprises information about samples at various
time points [1]. Up-to-date information, reflecting the most recent sta-
tus, would contribute more to our understanding of the characteristics of
the sample than out-of-date information [2]. This is also the case in the
application of machine learning (ML) algorithms to longitudinal data.
Given that the features of the samples have been changing over time, an
algorithm trained on them would yield more accurate predictions about
the target task when the data contains the most recent information [3].
However, the application of ML to longitudinal data is hindered by the
samples, including solely out-of-date information, given that the most
recent data has yet to be gathered. If the samples are divided into two

sets, one comprising older data and the other comprising newer data, the
ML algorithms may encounter difficulties in training both sets simulta-
neously due to the temporal heterogeneity between the two sets.
To address this issue, it is essential to minimize the temporal het-

erogeneity between the out-of-date and up-to-date sets. This suggests
that the strategy of transforming the older data to be similar to the newer
data could be employed, thereby enabling ML algorithms to train the
two sets together. The suitable methodology for implementing this
strategy is domain adaptation [4], which entails the transformation of
two different feature sets into a common feature space [5], with the
objective of minimizing the discrepancy between them, thereby repre-
senting a single, integrated feature set [6]. Accordingly, the application
of domain adaptation to longitudinal data enables representing the
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feature of out-of-date samples that have not yet been collected similar to
the features of up-to-date samples.
Domain adaptation minimizes the discrepancy between source and

target domains, enabling a target domain deficient in information to
benefit from a source domain sufficient in information within a common
feature space [7,8]. In the case of longitudinal data, the up-to-date and
out-of-date data correspond to the source and target data, respectively.
Domain adaptation is typically implemented using a feature projection
matrix or domain adversarial training [9]. Transfer Component Analysis
(TCA) [6] is a representative method employing a feature projection
matrix, which finds a set of projectors that minimize the maximummean
discrepancy (MMD) [10]. Domain-Adversarial Neural Network (DANN)
[11] is a prevalent method utilizing domain adversarial training, which
renders the origins of samples indistinguishable using a domain classi-
fier trained by a gradient reversal layer (GRL) [12]. A number of sub-
sequent methods have been developed that employ a feature projection
matrix or domain adversarial training derived from TCA or DANN,
respectively.
Despite these successes, the existing methods should be further

improved in two respects. At first, the domain adaptation algorithm
requires minimizing the information loss from the source domain data.
Previous works have represented a new common feature space by
transforming both source and target data. This approach carries a sig-
nificant risk of compromising the information-rich source domain.
Accordingly, domain adaptation needs to preserve the source data by
only transforming the target data. Next, the domain adaptation algo-
rithm requires considering a fundamental property of longitudinal data,
the homogeneity of features between the out-of-date and up-to-date
samples. Previous works have focused on representing an aligned
common feature space of different data from heterogeneous domains. In
contrast, samples in longitudinal data belong to the same domain and
are homogeneous in their features, and thereby, if more recent infor-
mation is collected on the out-of-date set, it will exhibit the same data
property as the up-to-date set. Therefore, domain adaptation for longi-
tudinal data needs to simultaneously aim for the minimization of tem-
poral heterogeneity and the maximization of featural homogeneity
between the out-of-date and up-to-date samples.
Motivated by the limitations above, we propose a novel domain

adaptation method, Prospective Domain Adaptation (PDA), for longitu-
dinal data. The proposed method is a one-way domain adaptation
technique that transforms only out-of-date features to represent them

similarly to up-to-date features, with the objective of matching the
explicit and implicit properties of the transformed and up-to-date fea-
tures. This is achieved through a combined process of feature projection
matrix and domain adversarial training. As illustrated in Fig. 1(a), the
proposed method entails transforming the temporal domain of the out-
of-date features, followed by label prediction. PDA is constituted of
three components: feature transformer, domain classifier, and label
predictor. First, the feature transformer is a projection matrix applied to
the out-of-date features with the purpose of minimizing the temporal
domain discrepancy. As shown in Fig. 1(b), it also aims to maximize the
homogeneity of the implicit and explicit features by matching the
manifolds and distributions of the two feature sets. Second, the domain
classifier reduces the overall discrepancy between the transformed and
up-to-date features by employing the domain adversarial training.
Third, the label predictor performs a target task on the out-of-date
samples by training the up-to-date labels. As a result, the proposed
method transforms the unlabeled, out-of-date samples to have similar
implicit and explicit properties as the labeled, up-to-date samples,
enabling predictions to be made about them.
The remainder of the paper is organized as follows. Section 2 in-

troduces the related works on the proposedmethod with methodological
comparisons. Section 3 presents a detailed description of the proposed
method with mathematical implementations. Section 4 shows the
experimental results on various datasets, including the ablation study.
Section 5 concludes the paper with remarks on the proposed method.

2. Related works

In this section, we present an overview of the related works on the
proposed method by categorizing the existing methods into two main
approaches to domain adaptation: feature projection matrix-based
approach and domain adversarial training-based approach, including
the methodological comparison with the proposed method.

2.1. Feature projection matrix-based approach

This approach directly minimizes the discrepancy between the do-
mains, as measured by the MMD, mapping the original data to a
reproducing kernel Hilbert space, where the source and target distri-
butions are assumed to be separable [6]. TCA is a representative method
for implementing this approach, and thereby, it has been extended to

Fig. 1. Overview of the proposed method. The proposed method is a one-way domain adaptation technique that transforms only out-of-date features (Xo) to
represent them similarly to up-to-date features (Xu). (a) PDA firstly transforms the temporal domain of the out-of-date feature, representing the transformed feature
(Xt). Subsequently, PDA minimizes the discrepancy between Xt and Xu, followed by label prediction of Xt . (b) For the discrepancy minimization, two objectives are
implemented so that the manifolds and distributions of two feature sets are implicitly and explicitly matched.
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numerous subsequent studies. A method for Joint Geometrical and
Statistical Alignment (JGSA) was proposed in [13], which reduces the
shift between domains both statistically and geometrically. As proposed
in Manifold Embedded Distribution Alignment (MEDA) [14], the
objective function for the projection matrix was improved to perform
TCA-based manifold regularization by integrating unlabeled data with
similarity constraints into the objective function for the feature projec-
tion matrix. Subsequently, the feature projection matrix was further
advanced to reduce the domain discrepancy using label information by
jointly matching the marginal and class-conditional distributions of both
domains, such as Cross-Domain Structure Preserving Projection (CDSPP)
[15] and Mutual Domain Adaptation (MDA) [16].

2.2. Domain adversarial training-based approach

This approach minimizes the domain discrepancy using a domain
classifier, which is trained by a GRL, thereby rendering the origins of
samples from different domains indistinguishable. DANN is a repre-
sentative method for implementing this approach, where the domain
discrepancy is measured by a binary cross-entropy (BCE) loss, and it has
been extended to numerous subsequent studies. For example, a method
for Adversarial Discriminative Domain Adaptation (ADDA) [17] was
proposed, which minimizes the domain shift using a generative adver-
sarial network (GAN)-based loss. This GAN-based framework was
extended by Domain Invariant Feature Augmentation (DIFA) [18],
which forces the learned feature extractor to be domain-invariant and
trains it through data augmentation in the feature space. Subsequently,
the more advanced techniques for the domain discriminator were pro-
posed by Multi-Adversarial Domain Adaptation (MADA) [19] and
Informative Discriminator-based Domain Adaptation (IDDA) [20],
where the former focused on capturing multimode structures to enable
fine-grained alignment of different data distributions based on multiple
domain discriminators, while the latter presented an informed adver-
sarial discriminator that guides the transformation of features to a more
structure adapted space by utilizing all the information available
including the class structure present in the source dataset.

2.3. Comparison of methodological characteristics

In the existing methods for domain adaptation based on feature
projection matrix, the objective function for the projection matrix was
designed to minimize the explicit domain discrepancy by default,
including the MMD-based constraint for distribution matching, and it
also aimed to minimize the implicit domain discrepancy via manifold
matching with the graph Laplacian-based constraint. Although this
approach is suitable for maximizing the featural homogeneity between
the two domains, it introduces the problem that domain adaptation and
label prediction are separately performed in the learning process,
reducing the efficiency of the overall optimization. On the other hand,
this problem is solved through the end-to-end learning process in the

existing methods based on domain adversarial training, but the domain
classifier only focuses on minimizing the distributional gap between the
two domains. Furthermore, both approaches suffer from the problem
that by transforming the source and target domains simultaneously,
resulting in the loss of information in the information-rich source
domain.
PDA, the method we propose in this study, is designed to alleviate the

abovementioned problems of the previous approaches. Compared to
existing methods, the key characteristics of the proposed method are
summarized in Table 1. PDA combines the feature projection matrix and
the domain adversarial training, matching the distributions and mani-
folds of two domains while simultaneously predicting labels for the
target domain. In addition, PDA employs a one-way domain adaptation
approach that only transforms the target domain while preserving the
source domain, thus avoiding information loss in the source domain.
Accordingly, the proposed method transforms the unlabeled, out-of-date
samples to have similar implicit and explicit properties as the labeled,
up-to-date samples, enabling predictions to be made about them.

3. Prospective domain adaptation

3.1. Overview of the proposed method

The proposed method aims to transform the out-of-date features to
have similar implicit and explicit properties as the up-to-date features,
consisting of three components: feature transformer, domain classifier,
and label predictor. At first, the feature transformer is a projection
matrix applied to the out-of-date features, intending to minimize the
temporal heterogeneity and maximize the featural homogeneity be-
tween two domains. In order to achieve the featural homogeneity, this
component transforms the out-of-date feature set in a manner that aligns
its topological and statistical properties with those of the up-to-date
feature set. Specifically, the feature transformer adapts the manifolds
and distributions between two feature sets. Manifolds represent topo-
logical properties, which are implicit information about the data based
on the structural relationships between samples, while distributions
represent statistical properties, which are explicit information about the
data based on the feature values of the samples. Accordingly, the feature
transformer, comprising the manifold and distribution adaptation, en-
ables the representation of the out-of-date feature set to be both
implicitly and explicitly similar to the up-to-date feature set. Next, the
domain classifier reduces the overall discrepancy between the trans-
formed and up-to-date features by employing domain adversarial
training. At last, the label predictor performs a target task on the out-of-
date samples by training the up-to-date labels. The following subsections
provide a detailed description of the components of PDA, including the
optimization process and the complexity analysis.

Table 1
Comparison of methodological characteristics for domain adaptation methods.

Method Domain adaptation approach Domain discrepancy matching Source domain preserving

Feature projection Adversarial training Distribution Manifold

TCA [6] ✓  ✓  
JGSA [13] ✓  ✓  
MEDA [14] ✓  ✓ ✓ 
CDSPP [15] ✓  ✓ ✓ 
MDA [16] ✓  ✓ ✓ 
DANN [11]  ✓ ✓  
ADDA [17]  ✓ ✓  
DIFA [18]  ✓ ✓  
MADA [19]  ✓ ✓  
IDDA [20]  ✓ ✓  
PDA (Ours) ✓ ✓ ✓ ✓ ✓
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3.2. Feature transformer

Let the feature matrices of out-of-date and up-to-date samples are
Xo ∈ Rno×d and Xu ∈ Rnu×d, respectively, where no,u are the number of
samples for each feature matrix and d is the feature dimensionality. At
first, the feature transformer linearly transforms Xo using the projection
matrix, denoted as P ∈ Rd×d, which is defined as a parameter reflecting
the pattern of longitudinal changes in features. Then, the features of
XoP ∈ Rno×d are smoothed by the graph G, which is derived from the
correlation matrix of Xu, denoted as W ∈ Rd×d, and thereby the trans-
formed feature matrix of the out-of-date samples, denoted as Xt ∈ Rno×d,
is defined as follows:

Xt = XoPG (1)

where G is defined as G = D−
1
2WD−

1
2 ∈ Rd×d with the diagonal matrix

D ∈ Rd×d (Dii =
∑

j
⃒
⃒Wij

⃒
⃒). The objective of this feature smoothing is to

achieve similarity between the correlation matrices of XoP and Xu,
thereby ensuring that those manifolds are consistently aligned. It is well
known that the nonsingular correlation matrix is the symmetric positive
definite and lies on a Riemannian manifold space M [21–23]. Accord-
ingly, the manifold aligning can be implemented by matching the cor-
relation matrices of each feature set. Subsequently, the distributions of
Xt and Xu are matched by minimizing Kullback-Leibler Divergence
(KLD) [24] as follows:

L k(P) = KLD(P t‖P u) = P t

{

log
(

P t

P u

)}T
(2)

where P t and P u are defined as P t = softmax(Xt) ∈ R1×d and P u =

softmax(Xu) ∈ R1×d, respectively.

3.3. Domain classifier

The domain classifier fd discriminates the domain labels indicating
the origin of samples in the transformed data Xt and the up-to-date data
Xu. The domain label set is denoted as Yd ∈ R(no+nu)×1, comprising binary
elements, where the domain labels for samples in Xt and Xu are defined
as +1 and –1, respectively. The predicted domain label set Ŷd is derived
by using the logistic function as follows:

Ŷd = fd(X) =
1

1+ e− XΘd
∈ R(no+nu)×1 (3)

where X is denoted as X =

[
Xt
Xu

]

∈ R(no+nu)×d, and Θd ∈ Rd×1 is the

parameter of fd. The parameter Θd is optimized by minimizing the BCE
loss L d between Ŷd and Yd as below.

L d(P,Θd) = −
{
YTd logŶd + (1(no+nu)×1 − Yd)

Tlog(1(no+nu)×1 − Ŷd)
}

(4)

3.4. Label predictor

The label predictor fl trains labels of samples in Xu. By denoting the
predicted label set as Ŷl ∈ Rnu×c where c is the number of classes, Ŷl is
derived by applying the softmax function as follows:

Ŷl = fl(Xu) = softmax(XuΘl) ∈ Rnu×c (5)

whereΘl is the parameter of fl. The parameterΘl ∈ Rd×c is optimized by
minimizing the cross-entropy loss L l between the predicted label set Ŷl
and the true label set Yl ∈ Rnu×c, as below.

L l(Θl) = − Tr
(
YTl logŶl

)
(6)

3.5. Optimization process

As illustrated in Fig. 2, the proposed method consists of three pa-
rameters: P,Θd, andΘl, and the objective function for PDA is defined by
combining Eq. (2), (4), and (6) as follows:

argmin
P,Θd ,Θl

γkL k(P) + γdL d(P,Θd) + γlL l(Θl) + L r(P,Θd,Θl) (7)

where L r denotes the L2-regularzation term for each parameter to
penalize the complexity, and γk,d,l are combining coefficients (γ∗ ≥ 0).
The objective function in Eq. (7) is optimized by the gradient descent
method [25,26]. First, the gradient with respect to the parameter Θl of
the label predictor is derived as follows.

∇Θl = γl
∂L l

∂Θl
+

∂L r

∂Θl
=

γl
nu
XTu(Ŷ l − Yl) + 2Θl (8)

Second, the gradient with respect to the parameter Θd of the domain
classifier is derived as below.

∇Θd = γd
∂L d

∂Θd
+

∂L r

∂Θd
=

γd
no + nu

XT(Ŷd − Yd) + 2Θd (9)

Third, the gradient with respect to the projection matrix P is derived
as follows.

∇P = γk
∂L k

∂P − γd
∂L d

∂P +
∂L r

∂P
(10)

By denoting Xt as Xt = 1
no
11×noXt, the derivative of L k w.r.t. P is

presented as below.

∂L k

∂P =
1
no
GXTo1

T
1×no

{

log
(

P t

P u

)

+ 11×d
}
{
Diag(P t) − P

T
t P t

}
(11)

Then, the derivative of L d w.r.t. P is defined as follows.

∂L d

∂X =

⎡

⎢
⎢
⎢
⎢
⎣

∂L d

∂Xo

∂L d

∂Xu

⎤

⎥
⎥
⎥
⎥
⎦
=

γd
no + nu

(Ŷd − Yd)ΘTd ,
∂L d

∂P =

(
∂L d

∂Xo

)T

XoGT (12)

Finally, the gradient w.r.t. P is derived by combining Eq. (10), (11),
and (12), as below.

The overall procedure for PDA is summarized in Algorithm 1.

3.6. Computational complexity

We further analyze the computational complexity of Algorithm 1
with the O notation. First, in the forward propagation, the time
complexity for the feature transformation, domain classification, and

∇P =
γk
no
GXTo1

T
1×no

{

log
(

P t

P u

)

+ 11×d
}
{
Diag(P t) − P

T
t P t

}
− γd

(
∂L d

∂Xo

)T

XoGT + 2P (13)
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label prediction is O

(
nod2

)
, O ((no + nu)d), and O (nudc), respectively,

and the space complexity for the feature transformation, domain clas-

sification, and label prediction is O

(
nod + d2

)
, O ((no + nu)d), and

O (nud + dc + nuc). If nu≫d≫c, the space complexity for the label pre-
diction is reduced to a simplified form, expressed as O (nud). Then, the
overall time and space complexity for the forward propagation is

O

(
nod2 +nod+nud

)
and O

(
nod + nud + d2

)
, respectively. Next, in the

backward propagation, the time complexity for updating the projection

matrix, domain classifier, and label predictor is O

(
nod2 + d3

)
, O ((no +

nu)d), and O (nudc), respectively. The space complexity for updating the

projection matrix, domain classifier, and label predictor is O
(
nod + d2

)
,

O ((no + nu)d), and O (nud + nuc + dc), respectively. If nu≫d≫c, the
space complexity for updating the label predictor is simplified to
O (nud). Therefore, the overall time and space complexity for the back-

ward propagation is O

(
nod2+d3 +nud

)
and O

(
nod + nud + d2

)
,

respectively.

4. Experimental results

4.1. Data description

The proposed method was applied to a total of eight benchmark
datasets: one electrocardiogram (ECG) dataset (ECG200), three sensor
datasets (Strain, Trace, and Wafer), and four synthetic datasets (BME,
CBF, Pattern, and UMD). BME [27] is a synthetic dataset with three
classes: one class is characterized by small positive bells occurring in the
initial period (Begin), one without bells (Middle), and one with positive
bells occurring in the last period (End). CBF [28] is a synthetic dataset

Fig. 2. Schematic description for training process of the proposed method.

Algorithm 1
Prospective Domain Adaptation.

Input:
Out-of-date feature

{
Xo ∈ Rno×d

}

Up-to-date feature and label
{
Xu ∈ Rnu×d,Yu ∈ Rnu×c

}

Output: Transformed feature Xt and Predicted label Ŷo for Xo

Initialize parameters: P, Θd, and Θl
While (stopping criterion is not satisfied)
Forward propagation
Feature transformation: Xt by (1)
Domain classification: Ŷd by (3)
Label prediction: Ŷl by (5)

Loss functions
Kullback-Leibler divergence L k(P) by (2)
Binary cross-entropy loss L d(P,Θd) by (4)
Cross-entropy loss L l(Θl) by (6)

Backward propagation
Label predictor Θl := Θl − η∇Θl by (8)
Domain classifier Θd := Θd − η∇Θd by (9)
Projection matrix P := P − η∇P by (13)

End while
Return Transformed feature Xt and Predicted label Ŷo for Xo

Table 2
Summary of benchmark datasets.

Dataset Type # Samples # Features # Classes

BME Synthetic 180 128 3
CBF Synthetic 930 128 3
ECG200 ECG 200 96 2
Pattern Synthetic 5,000 128 4
Strain Sensor 1,272 84 2
Trace Sensor 200 274 4
UMD Synthetic 180 150 3
Wafer Sensor 7,164 152 2
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including 930 signals of 128 lengths, which are classified into three
shapes: cylinder, bell, and funnel. ECG200 [29] is an ECG dataset, where
each series represents electrical activity recorded during one heartbeat,
which is classified as normal or myocardial infarction. Pattern [30] is a
synthetic dataset containing 5,000 signals of 128 lengths, which are
classified into four shapes: ‘down-down’, ‘up-down’, ‘down-up’, and
‘up-up’. Strain [31] is a sensor dataset that involves distinguishing be-
tween two sensor types: humidity and temperature sensors. Trace [27]
is a sensor dataset designed to simulate instrumentation failures in a
nuclear power plant, with four different types of failures. UMD [27] is a
synthetic dataset with three classes: one class is characterized by a small
up bell arising at the initial or final period (Up), one does not have any
bell (Middle), and one has a small down bell arising at the initial or final
period (Down). Wafer [29] is a sensor dataset of semiconductor mi-
croelectronics fabrication, where each data contains measurements
recorded by one sensor while processing one wafer with one tool, and
the two classes are normal and abnormal. Table 2 provides a summary of
the dataset, and more information about the dataset is available in the
Time Series Classification repository (https://www.timeseriesclassific
ation.com).

4.2. Experimental settings

For the experiment, samples of each dataset were divided in half and
set as out-of-date and up-to-date sets. Also, we divided the length of time
in half, the first half and the second half were set as the features of each
set. The hyperparameters, γl, γd, and γk, in (4) were varied in the range of
{0.01, 0.1, 1, 10, 100} and determined to be the value that yielded the
best results. The experimental results of the proposed methods were
compared with a total of 10 existing methods: five feature projection
matrix-based methods TCA [6], JGSA [13], MEDA [14], CDSPP [15],
and MDA [16] and five domain adversarial training-based methods
DANN [11], ADDA [17], DIFA [18], MADA [19], and IDDA [20]. The
model architectures of comparison methods were constructed with
reference to the best performance reported in each paper. The domain
adversarial training-based methods, including the proposed method,
were trained by using the ADAM optimizer [32] with a learning rate of
0.005. The entire experiment was repeated 100 times for each setting
and the performance was measured by twometrics: the proxy A-distance
(PAD) [33] for the domain adaptation and the area under receiving
operating characteristic curve (AUC) for the label prediction.

4.3. Performance comparison

4.3.1. Results for domain adaptation
The results for comparing the domain adaptation performance of the

proposed method with existing methods are shown in Fig. 3. At first, the
baseline PAD results for the eight datasets used in the experiment were
0.8224 on average. The domain adaptation by the proposed method
showed an average PAD performance of 0.2932, which is a 64.3%
improvement over the baseline result and an average 28.8% better
performance than the 10 comparison methods. Among the comparison
methods, the feature projection matrix-based methods yielded an
average PAD performance of 0.3965, which is 10.3% better than the
average PAD performance of 0.4418 for the domain adversarial training-
based methods. Furthermore, including the proposed method, the
domain adaptation methods that match both the distribution and
manifold of data from out-of-date and up-to-date samples showed better
PAD results than the other methods. The detailed results for the per-
formance comparison of domain adaptation are delineated in Table 3.

4.3.2. Results for label prediction
The comparison of label prediction performance between the pro-

posed and existing methods is illustrated in Fig. 4. The baseline AUC
results averaged 0.6495 across the eight datasets utilized in the exper-
iment. The proposed method demonstrated an average AUC perfor-
mance of 0.8454, reflecting a 30.2% improvement over the baseline and
an enhancement of 7.2% compared to the ten other evaluated methods.
Among the comparison methods, the domain adversarial training-based
methods achieved an average AUC performance of 0.8164, surpassing
the feature projection matrix-based methods, which had an average
performance of 0.7635, by 6.9%. The comparative results showing the
difference in AUC performance between the two approaches suggest that
domain adaptation and label prediction performed end-to-end learning
produce better results than when performed individually.

4.4. Ablation study

We further conducted the ablation experiment for the proposed
method. For this experiment, we configured two ablated models Φw/K
and Φw/D by ablating L d and L k in the objective function, respectively,
which are terms for domain adaptation. In other words, Φw/K performs
domain adaptation using the KLD without the domain classifier, while

Fig. 3. Performance comparison of domain adaptation.
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Φw/D includes the domain classifier for domain adaptation without the
KLD, and the proposed method is denoted by ΦK+D as it encompasses
both components. The experimental settings for the two ablated models
were applied in the same way as the proposed method, and the results
are shown in Fig. 5. The proposed method ΦK+D performed the best in
both domain adaptation and label prediction, followed by Φw/K. The
performance of PAD and AUC of Φw/K were 0.3568 and 0.8053
respectively, which was 15.7% and 8.6% better than the performance of
PAD of 0.4230 and AUC of 0.7416 of Φw/D. It can thus be demonstrated
that the optimization of the feature projection matrix through the use of
KLD constituted a significant contribution to the superior performance
of the proposed method in comparison to other methods.

5. Conclusion

In this paper, we proposed prospective domain adaptation for longi-
tudinal data. The most pronounced feature of our method is to perform
domain adaptation, which enables prediction even if there is no label by
transforming the out-of-date data implicitly and explicitly similarly to
the up-to-date data. This feature-transforming process includes adapta-
tion to the manifolds and distributions of data. The transformed features
are matched more precisely, so it is difficult to distinguish the origin
domain of the samples by the domain discriminator and the gradient
reversal layer. Then, the label predictor trains the labels in the up-to-
date set and predicts the labels in the out-of-date set. The preceding
experiments on the benchmark datasets validated the proposed method,
and the results indicated that the proposed method performed better

Table 3
Comparison results for performance of domain adaptation.

Method Datasets Overall
average

P-value*

BME CBF ECG200 Pattern Strain Trace UMD Wafer

Baseline .8338
±.0530

.8943
±.0178

.7199
±.0063

.8000
±.0303

.9048
±.0158

.7850
±.0152

.8375
±.0203

.8039
±.0050

.8224 ±.0164 2.49 ×

10–257

TCA .4117
±.0335

.4077
±.0379

.4367
±.0272

.2992
±.0307

.2558
±.0494

.5465
±.0547

.7176
±.0318

.6928
±.0152

.4710 ±.0243 2.57 ×

10–138

JGSA .4160
±.0515

.4113
±.0517

.4321
±.0456

.3275
±.0442

.3001
±.0540

.4986
±.0557

.6345
±.0474

.6070
±.0408

.4534 ±.0176 5.01 ×

10–151

MEDA .3328
±.0572

.3336
±.0667

.3698
±.0622

.2474
±.0710

.2016
±.0729

.4640
±.0694

.6188
±.0610

.5916
±.0561

.3949 ±.0227 2.24 × 10–98

CDSPP .3039
±.0604

.2935
±.0573

.3227
±.0626

.2029
±.0556

.1645
±.0734

.4165
±.0733

.5776
±.0635

.5586
±.0608

.3550 ±.0213 3.79 × 10–66

MDA .2611
±.0488

.2604
±.0506

.2844
±.0502

.1840
±.0459

.1464
±.0521

.3667
±.0557

.4954
±.0569

.4649
±.0433

.3079 ±.0169 3.58 × 10–12

DANN .4442
±.0495

.4468
±.0507

.4595
±.0440

.3614
±.0420

.3388
±.0561

.5367
±.0520

.6675
±.0479

.6430
±.0509

.4872 ±.0168 3.29 ×

10–170

ADDA .4163
±.0377

.4214
±.0464

.4339
±.0458

.3467
±.0362

.3175
±.0438

.4933
±.0477

.5990
±.0432

.5816
±.0365

.4512 ±.0145 2.12 ×

10–161

DIFA .3931
±.0451

.3854
±.0427

.4078
±.0433

.3196
±.0467

.2858
±.0520

.4805
±.0549

.5899
±.0469

.5774
±.0452

.4300 ±.0170 3.94 ×

10–140

MADA .3705
±.0358

.3701
±.0415

.3962
±.0347

.2978
±.0378

.2617
±.0418

.4749
±.0397

.5994
±.0387

.5802
±.0315

.4189 ±.0126 1.16 ×

10–149

IDDA .3707
±.0218

.3689
±.0255

.3895
±.0207

.2892
±.0213

.2581
±.0323

.4717
±.0330

.5923
±.0199

.5739
±.0151

.4143 ±.0138 3.70 ×

10–142

PDA .2585
±.0254

.2536
±.0183

. 2743
±.0323

.1749
±.0278

.1353
±.0179

.3530
±.0138

.4737
±.0279

.4223
±.0172

.2932 ±.0103 –

* P-values were calculated by comparing the overall average performance between the proposed and comparison methods.

Fig. 4. Performance comparison of label prediction.
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than the comparison method in both domain adaptation and label
prediction.
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