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Oil price prediction has long been an important determinant in themanagement ofmost sectors of industry across
theworld, and has therefore consistently required detailed research. However, existing approaches to oil price pre-
diction have sometimes made it rather difficult to implement the complex interconnected relationship between
the price of oil and other global/domestic economic factors. This has been complicated by the influence of the ir-
regular impact caused by the economic factors that affect the oil price. Recently, a machine learning algorithm,
known as semi-supervised learning (SSL) has emerged, whose strength is the ease it can bring to the network
representation of entities and the explicitness of inferencewhich is expressed through relations between different
entities. Since an awareness of the network representation of complicated relations between economic factors
including the oil price is natural in SSL, this method allows the effects of the impact of economic factors on the
oil price to be assessed with improved accuracy. SSL has so far been exploited in dealing with the non time-
series types of entity, but not for the time-series types. Therefore, the proposed study is to exploit the method of
representing the network between these time-series entities, and to then employ SSL to forecast the upward
and downward movement of oil prices. The proposed SSL approach will be tested using one-month-ahead
monthly crude oil price predictions between January 1992 and June 2008.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

For many years, the price of crude oil price has been an important
determinant of global or national economic performance. An increase
or decrease in the oil price will have a marked economic effect on all
countries in the world. Thus the state of oil prices is a consistent pre-
occupation of economic experts in most industries, as well as many
politicians. A change in the crude oil price can lead to a transfer of in-
come between importing and exporting countries through a shift in
the terms of trade [7], since oil is the world's most actively traded
commodity accounting for over 10% of total world trade [27]. For net
oil-importing countries, higher oil prices can lead to a drop in real nation-
al income caused by increased input costs, along with reduced non-oil
demand, higher inflation, lower investment, upward pressure on wage
levels, higher unemployment, reduced tax revenues, increases in budget
deficits, higher interest rates, and downward pressure on exchange rates.
Net oil-exporting countries may experience those economic phenomena
+82 31 219 1610.
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in the oppositeway. An increase in the oil price can directly boost the real
national income of net oil-exporting countries because of the higher
earnings theywill get fromexports,whichmay eventually lead to greater
concentration of international assets. Over the longer term, part of this
gain may be later offset by losses from the lower demand for exports
due to the economic recession propagated by trading partners. The
bigger the crude oil price increase and the longer higher prices are
sustained, the bigger the impact on the global economy.

The overall mechanism by which the oil price affects most global
or national economic factors is generally well understood, and there-
fore forecasting the oil price has been perceived as an important
research topic. One of the most commonly used approaches to oil
price prediction is the statistical time-series method [20,28], which
characterizes the oil price as consisting of a time trend, a seasonal fac-
tor, a cyclical element and an error term. Many techniques are avail-
able to break up a series of oil prices into these components. They
include Akarca and Andrianacos' autoregressive integrated moving
average (ARIMA) model [2], Lanza et al.'s error correction model
(ECM) [21], and Mirmirani and Li's vector auto-regression (VAR)
model [24]. Other kinds of approach assume that stochastically quan-
tifying the relationship between the oil price and the latent economic
factors may provide more relevant prediction than attempting to un-
cover the underlying structure of the series itself. Such methods
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Fig. 1. Graph-based semi-supervised learning (SSL).
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include the stochastic, semi-parametric, and wavelet-based methods.
Cortazar and Schwartz implemented a stochastic model for oil futures
prices [11], Morana suggested a semi-parametric statistical method
for short-term forecasting based on the GARCH properties of crude
oil price [25], and Yousefi et al. applied a wavelet-based technique
to predict crude oil prices [39]. Other approaches using data mining
or machine learning algorithms have also been applied to oil price
prediction problem. Yu et al.'s ensemble learning method, which is
based on artificial neural network (ANN) [40] and Xie et al.'s support
vector machines (SVM) [37].

Despite such attempts, oil price prediction has remained a difficult
problem due to its complexity and irregularity. The complexity is main-
ly due the complex interactions of many global and national eco-
nomic factors. Such influences are certainly significant but their
magnitude is difficult to quantify because the relationship between
the oil price and external factors is a complicated network structure
which is affected by direct/indirect and repetitive/cyclic influences.
As regards the approaches mentioned above, most techniques are dif-
ficult to use in implementing the network structure. On the other
hand, the irregularity is caused by the sudden movement of the oil
price as a number of sharp price increases/decreases have occurred
in the past. There have been several oil price shocks in 1973, 1978
and 2008, including drastic price collapses in 1986 and 1998 [1].
The price of oil is basically determined by balancing the amount of
oil the net oil-exporting countries can supply with the demands of
the net importing countries, but the irregularity is caused more by
the shocks on the supply-side, whichmay be political disputes or sud-
den changes in external economic factors [3,6,12,16,17,34]. In such
cases, a precise prediction of the values of the oil price will be difficult
to obtain. However, a rough prediction of the upward and downward
changes of the price can still be helpful for decision making. Some of
the approaches mentioned above can predict a binary estimate for the
changes. But the prediction will inevitably be incomplete, as a propa-
gation pathway of the irregular impact of the source factor on the oil
price is difficult to illustrate without explicit network representation
on the relationship.

Most recently, a category of machine learning algorithms, known
as semi-supervised learning (SSL) has emerged, the main strength
of which is that it allows taking advantage of the strengths of both su-
pervised learning and unsupervised learning[10,44]. The primary goal
of supervised learning is to build accurate classifiers or regressors
using labeled data. On the other hand, unsupervised learning is usual-
ly employed to discover data structure from unlabeled data. In
semi-supervised learning, meaningful representation of complicated-
ly structured data is identified from unlabeled data, and then the de-
cision or regression function is achieved on both labeled and the
unlabeled, which is smooth with respect to the underlying geometry.
SSL is regarded as a more pragmatic learning scheme since many
practical domains are in such situation that there is a large supply
of unlabeled data but limited labeled data which can be expensive,
difficult, and time-consuming to generate. Many related researches
have shown validity of SSL in a number of application domains such
as spam filtering[43], document categorization [30], video surveil-
lance [31], text classification [35], text chunking [4], gene expression
data classification [5,13], and webpage classification [22], etc. In those
literatures, SSL is often compared with the representative models of
supervised learning, and shows its superiority over them thanks to
its capability of learning from only a few labeled data utilizing a
large amount of unlabeled data. There has been a whole spectrum
of interesting ideas on how to learn from both labeled and unlabeled
data, e.g., the expectation-maximization based approach [26], self–
training [38], co-training [9], Transductive support vector machines
[18], and the graph-based approaches such as graph mincuts [8],
harmonic approach [45], and local and global consistency [41], etc.
Among several types of SSL algorithms, a graph-based SSL is
employed in our study [32,33]. In graph-based SSL, the entities are
connected via the similarities between them, and prediction about
an entity is made by assessing the propagated influence of its neigh-
boring entities through the connections that exist within them.

In this paper, we propose a graph-based SSL approach for predicting
upward and downward changes in a series of oil prices. The representa-
tion of complicated relations between entities is natural in the SSL
learning framework and the propagation of a change in an entity is ex-
plicitly elucidated via network structure. By treating the economic fac-
tors, including the oil price, as entities of the network, these features
of SSL will contribute to resolving the complexity and irregularity of
the oil price prediction problem. SSL has been exploited to some extent
for assessing the non time-series types of entity, but not for time-
series types. Therefore, the intention here is to exploit this method of
representing the relationship between time-series type entities and
to then employ SSL to forecast the upward and downward movement
of oil prices. The proposed SSL approachwill be applied to the crude oil
price prediction of West Texas Intermediate (WTI) from January 1992
to June 2008, and will be validated through comparison with an auto-
regression model, a logistic regression model, an ANN model and an
SVM model.

The rest of this paper is organized as follows. Section 2 briefly in-
troduces the SSL algorithm. Section 3 presents the proposed SSL
model for time series prediction. Section 4 provides the experimental
results as evaluated with regard to the WTI crude oil prices and
compares the proposed model with five other representative models.
Finally, in Section 5, conclusions will be drawn.

2. Semi-supervised learning

In graph-based SSL algorithm, a data point (or entity) xi∈RM(i=1,…,
n) is represented as a node i in a graph (or network), and the relationship
between data points is represented by an edge where the connection
strength from each node j to each other node i is encoded aswij of a sim-
ilarity matrixW [42]. Fig. 1 presents a graphical representation of SSL.

A weight wij can take a binary value (0 or 1) in the simplest case.
Often, a Gaussian function of Euclidean distance between points with
length scale σ is used to specify connection strength:

wij ¼ exp �
xi � xj

� �T
xi � xj

� �
σ2

0
B@

1
CA if i e j 0k′ nearest neighbors

� �

0 otherwise

;
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Usually, an edge i~ j is established when node i is one of k-nearest
neighbors of node j or node i is within a certain Euclidean distance r,
‖xi−xj‖br. The labeled nodes have labels yl∈{−1, 1}(1=1,…,L), while
the unlabeled nodes have zeros yu=0(u=L+1,…,L+U). The algorithm
will output an n-dimensional real-valued vector f=[flTfuT]T=(f1,…,fL,fL+1,
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…,fL+U)T which can be thresholded to make label predictions on fL+1,…,
fL+U after learning. It is assumed that (a) fi should be close to the given
label yi in labeled nodes and (b) overall, fi should not be too different
from its adjacent nodes fj. One can obtain f by minimizing the following
quadratic functional:

Minf f � yð ÞT f � yð Þ þ μfTLf ; ð2Þ

where y=(y1,…,y1,0,…,0)T, and the matrix L, called the graph Laplacian,
is defined as L=D-W, D=diag(di), and di=∑jωij. The first term corre-
sponds to the loss function in terms of condition (a), and the second term
represents the smoothness of the predicted outputs in terms of condition
(b). The parameter μ represents trades between loss and smoothness. The
solution to Eq. (2) is obtained as

f ¼ Iþ μLð Þ�1y; ð3Þ

where I is the identity matrix. The formulation of Eq. (2) and its closed-
form solution (Eq. (3)) present the SSL classification framework, hence
the resulting thresholded value of f is ideally suited to capture the move-
ment of oil prices.

3. Proposed method

To apply the graph-based SSL to time series prediction, we pro-
pose a method of graph representation for time series data, and a pro-
cedure for obtaining predicted values from the graph. For instance,
assume that multiple time series are given as the input for the predic-
tion problem of theWTI intermediate oil price of this month: the total
amount of Saudi oil production (SAUDI), the surplus ability of OPEC
production (OPEC surplus), NYMEX oil future price (NIMEX_OI), etc.
To apply SSL to this problem, the proposed method begins with a
re-designed graph as in Fig. 2.

The nodes in the graph represent the time series variables that in-
fluenceWTI, e.g., demand- and supply-related variables and other ex-
ternal economic indicators (factors). Then the edge between any two
nodes i~ j stands for the similarity of the two sets of time series, rep-
resented as ‘wij∈W’. The label ‘yt’ on each node presents either ‘up’
(+1) or ‘down’ (−1) of the time series at time point t. In the graph
of Fig. 2, the labels of WTI and SAUDI are not known yet at time
point t, and hence are unlabeled. To estimate the label yt, the similar-
ity matrix of SSL was calculated at time point t-1, Wt−1. Based on this
set-up, we explain how to measure the similarity ‘wij’ of a similarity
matrix W and how to set the value for label ‘y’.

3.1. Similarity matrix

The design of the similarity matrixW plays a critical part in the as-
pect of performance when using SSL [10], [44]. In the matrix W, each
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Fig. 2. Graph SSL representation for time series prediction.
element represents how strongly the two nodes are related, with
larger elemental value being associated with greater nodal similarity.
In the proposed method, the time-series data are transformed into
vectors by building technical indicators (TIs) and employing feature
extraction techniques to build the similarity matrix. The general pro-
cess of constructing the similarity matrix is described in Fig. 3.

3.1.1. Technical indicator (TI) transformation
TIs are frequently used in financial forecasting as they offer the ad-

vantages of removing the noise (oscillatory noise) inherent in time
series and illustrating the underlying structure, i.e., the tendencies
and structural factors affecting variation. Oil prices and other eco-
nomic factors exist as time series data by the nature of the variables,
and each of them is defined as a sequence as

Xt ¼ x1; x2;…; xi;…; xtf g; ð4Þ

where t represents the current time point, and xt is the corresponding
value. The existence of Xt as time series data induces several problems
in the direct application of SSL to the data. As shown in Fig. 2, each of
the nodes on the graph has its own time series, as shown in (4). For
instance, the WTI node has Xt

WTI and the SAUDI node also has Xt
SAUDI.

The problem is that it is difficult to draw the similarity between
them directly from the two sets of time-series data. Therefore, indi-
vidual time series are transformed into structural characteristics of
time point t, i.e., StWTI and St

SAUDI, representing the trends and varia-
tions of individual series. Table 1 summarizes the TIs used in this
study. The similarity between the two nodes is measured by using
the seven-tuple vector St={s1,s2,s3,s4,s5,s6,s7} composed of MA, BIAS,
OSC, ROC, K, D, and RSI.

Using the TIs enables the time-series data to be transformed into
vector-type data, while maintaining the time associations of the se-
ries, and thus eases their application to SSL. Each indicator has param-
eters, denoted as p or q as shown in Table 1, which must be decided
by the user. However, since there is no rule for deciding appropriate
parameter values, the decisions are generally made through
trial-and-error. Another alternative is to consider all the diverse
values of the parameters. In such a case, however, one indicator will
be increased to as many variables as the number of combinations of
the parameters, p=1,…,m and q=1,…,r, so that the resulting vector
will be represented as St={s11,…,s1m,s21,…,s2m,s31,1,…,s3m,r,…,s71,…,s7m}.
This may increase the dimensions of input variables, thereby inducing
the curse of dimensionality and possibly causing model over-fitting.
Therefore, the next section introduces a method that uses all the di-
verse parameter values while reducing the unnecessary dimensions
derived from the TI parameters.

3.1.2. Feature extraction
Feature extraction refers to the process of determining a mapping

procedure that reduces the dimensionality and removes the noise
Technical Indicator Transformation

Feature Extraction

Original Data

Similarity Matrix 

Fig. 3. Constructing the similarity matrix.



Table 1
The definition of technical indicators (TIs).

TIs Meaning

s1 MAp Xtð Þ ¼ 1
p xtð Þ þ p−1

p MAp Xt−1ð Þ p-moving average
(exponential smoothing)

s2 BIASp Xtð Þ ¼ xt−MAp Xtð Þ
MAp Xtð Þ The change rate of xt relative to MAp(Xt)

s3 OSCp;q Xtð Þ ¼ MAp Xtð Þ−MAq Xtð Þ
MAp Xtð Þ The change rate of MAq(Xt) relative to

MAp(Xt)
s4 ROCp Xtð Þ ¼ xt−xt−p

xt
The relative rate of change for Xt between p
consecutive time points

s5 Kp
t ¼ xt−Mint

i¼t−p−1 xið Þ
Maxti¼t−p−1 xið Þ−Mint

i¼t−p−t xið Þ Standardization of xt

s6 Dt
p=MA3(Kt

p) 3-moving average of Kt
p

s7 RSIpt ¼ ∑t

i¼t−p−1 xi−xi−1j jð Þ
∑t

i¼t−p−t xi−xi−1j jð Þ
, The relative strength index.
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effect from the data. Among the various methods for feature extrac-
tion, the linear method of principal component analysis (PCA) is the
most common. By calculating the eigenvectors of the covariance ma-
trix of original data, PCA transforms a high-dimensional input vector
into a low-dimensional one whose components (extracted features)
are uncorrelated. On the other hand, among the several kinds of
nonlinear PCA (NLPCA), auto-associative neural network (AANN) is
one of the well known nonlinear transformation methods. In AANN,
the network is trained to perform identity mapping where the values
of input features are approximated at the output layer, and the
nonlinear principal components can be obtained from the hidden
nodes in the bottleneck layer.

3.1.2.1. Principal component analysis (PCA). PCA can be used for dimen-
sionality reduction in a data set by extracting important hidden features
that provide the greatest contribution to its variance. Technically, PCA
attempts to find orthonormal axes which maximally decorrelate the
original features of data. Given the data points si∈Rm(i=1,…,n and
∑i=1

n si=1,usually mbn), PCA carries out linear transformation of
each si into a new one zi by

Zi|{z}
m�1

¼ UT|{z}
m�m

si|{z}
m�1

; i ¼ 1;…;n; ð5Þ

where U is them×m orthogonal matrix whose k th column uk is the k th

eigenvector of the covariance matrix C ¼ 1
n∑

n
i¼1sis

T
i . The matrix U can

be obtained by solving the eigenvalue problem with respect to C,

λkuk ¼ Cuk; k ¼ 1;…;m; ð6Þ

where λk is an eigenvalue of C and uk is the corresponding eigenvector.
The magnitude of an eigenvalue stands for the proportion of variance
that can be explained by the corresponding eigenvector. Therefore, by
taking the first p largest eigenvectors ŨT={u1,u2,…,up} we can find
“lower” dimensional orthonormal space while still retainingmost impor-
tant aspects of the data. A projected data point onto the lower dimension-
al space, s̃i, is calculated as the orthogonal transformations of si,

s̃i|{z}
p�1

¼ ŨT|{z}
p�m

si|{z}
m�1

; i ¼ 1;…;n; : ð7Þ

Although PCA is a well established dimensionality reductionmethod,
its applicability is limited by the assumption that the data is a linear com-
bination of certain features. Therefore, if the data set shows non-linear
relationship among features, there is no guarantee that the extracted fea-
tures by PCA will contain all important features.

3.1.2.2. Nonlinear principal component analysis (NLPCA): auto-associative
neural network (AANN). Another approach to dimensionality reduction
is through the use of an AANN, a special kind of feed-forward neural net-
work [19]. AANN attempts to find and eliminate nonlinear correlations
in the data. Similar to PCA, it can be used to reduce the dimension-
ality of data by removing redundant features. The general structure
of AANN, as shown in Fig. 4, consists of an input layer, an output
layer, and multiple hidden layers. Both the number of input nodes
and that of output nodes are equally set to m. Among the hidden
layers, the mapping layer models the mapping function (F1) and
the demapping layer models the demapping function (F2). The
number of nodes, p, in a particular hidden layer, the so called “bot-
tleneck layer”, is set to be less than the number of nodes in the
input/output layer (pbm). In auto-associative mapping, the target
data is set to be identical to the input data. This “identity mapping”
creates a global reduction of the data dimensionality while the input
data goes through the bottleneck layer before appearing at the output
layer. Let F denote the auto-associative mapping learnt by the network.
If s̃1; s̃2;…; s̃n
n o

is the set of output data produced by the AANNwhen
the input data set {s1,s2,…,sn} is given, then F can be found which min-
imizes the mean square error,

E ¼ ∑n
i¼1 si− s̃i

� �T
si− s̃i

� �
¼ ∑n

i¼1 si−F sið Þð ÞT xi−F sið Þð Þ: ð8Þ

Themapping function F can be separated into F1 and F2, so that F(.)=
F2(F1(.)), where F1 is the transformation in the network from the input
layer into the dimension compressing the hidden layer (the bottleneck
layer), and F2 is the transformation from the bottleneck layer into the
output layer. To summarize, the data are first compressed to lower the
dimensionality and then reconstructed. The mapping from the input
layer to the bottleneck layer can be regarded as a “nonlinear” projection
onto the lower dimensional space (m→p), and each node in the bottle-
neck can be considered as an extracted feature retaining significant
information of the data. New data s̃i is then calculated as

s̃ i|{z}
p�1

¼ F1 sið Þ|{z}
m�1

: ð9Þ

AANN is a good model to extract the variables that can well express
the nonlinear relationship of data if its structure is well established.
However, since AANN is not a method in which the number of the
nodes of the bottleneck layer is determined from the beginning, its
need to be determined by the users in accordance with the situation
introduces significant difficulty.

3.2. Label

The label on the node in the SSL graph in Fig. 2 is designed to explain
whether the predicted value of the corresponding variable is up or
down. It can be formulated as follows:

yt ¼ sign xt−MA3 xtð Þð Þ: ð10Þ

For instance, if the total amount of SAUDI oil production of this
month (t) exceeds its three-month moving average, Eq. (10) will give
a ‘yt=+1’ label. On the contrary, the node is labeled as ‘yt=−1’ for
the opposite case. And ‘yt=0’ if there is no information about themove-
ment of the corresponding time-series value at time point t; the label is
to be predicted. In the proposed method, we set the label of the target
variable, WTI spot prices, to ‘0’. Also note that some of input variables
may not be able to be labeled, for instance, SAUDI in Fig. 2, but SSL pro-
duces a prediction even for such a node.

Given label yt, Eq. (3) provides the predicted value ft for every
node, which can take on a real number unlike the values of label yt.
The following interpretation can be put on the predicted value. At
time point t, if the predicted value ft is an arbitrary positive number,
then it is equivalent in sign with the value of (xt−MA3(xt)). This
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Fig. 5. Schematic description of interpreting forecasted values (when ft>0).
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means that xt, i.e., the WTI oil price for time point t will exceed the
price of the past three-month moving average. To rephrase this

sign ftð Þ > 0⇔sign xt−MA3 xtð Þð Þ > 0 ð11Þ

and thus, the following inequality holds:

xt > MA3 xtð Þ: ð12Þ

To substitute the right-hand side of the inequality with the defini-
tion of themoving average equation in Table 1, the following inequality
is derived

xt >
1
3
xt þ

3−1
3

MA3 xt−1ð Þ;

and summarized as the final form below.

xt > MA3 xt−1ð Þ ð13Þ

That is, since ‘ft>0’ actually means xt>MA3(xt−1), this implies that
‘one-time-point-ahead prediction’ is available with the predicted value
ft and MA3(xt−1) at time point t-1. This procedure is schematized as
shown in Fig. 5.

4. Experiment

In this section, we implement the proposed method on the predic-
tion of price movement of West Texas Intermediate crude oil. As
aforementioned in the earlier sections, a set of multiple time series
data is described using a network (or a graph) to capture the multiple
interactions included and prediction is made using SSL. Since the con-
struction procedure of the network employs TI transformation which
increases dimensionality, feature extraction is implemented through
alternative approaches of PCA and NLPCA. Depending on the number
of extracted features, many models are possible, and therefore the best
model is determined by performance comparison using a measure
known as the area under the ROC curve (AUC). Finally, comparison
with other representative data mining models is made of the best SSL
model determined previously.

4.1. Data

The data employed in this study are the time-series data of the
prices of the WTI crude oil which consist of 198 monthly spot prices
ranging from January 1992 to June 2008 as shown in Fig. 6.

For the same span, the Korea Energy Economics Institute (KEEI)
made available the 25 diverse external economic factors (time series
variables) that are strongly related to the WTI oil price screened by
the domain experts, e.g., demand- and supply-related variables and
other external economic indicators. The demand-related variables in-
clude the amount of overall international oil production, the amount
of OPEC oil production, and the amount of SAUDI oil production. The
supply-related variables include the amount of overall international
demand, the amount of OECD countries' oil demand, and the amount
of non-OECD countries' oil demand. Other economic indicators in-
clude the producer price indices and the US dollar exchange rates.
We tested the association of those 25 input variables with the WTI
oil price in the continuous scale with R2 improvement values at the



Fig. 6. The monthly WTI crude oil prices from Jan. 1992 to Jun. 2008.
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significance level of α=0.01 in order to reject the insignificant ones
[29]. But all of the given 25 variables showed statistical significance,
and hence employed all as input variables in our study. The variables
are tabulated in Table 2. Among them, WTI is the target variable and
so regarded as unlabeled. Fig. 7 shows how the 25 external economic
factors used as input variables affect WTI. Notably, input variables
not only affect WTI but also affect each other in a very complicated
manner.

The data set used in the experiment was set up as follows. The first
100 monthly data values for January 1993 through April 2001 were
used as a training data set. The remaining 86 monthly data values
for May 2001 through June 2008 were used as a test set (of the 198
time points in total, 12 time points necessary to create TIs were ex-
cluded) for performance comparison with competing models.
Table 2
The 26 sets of time-series data from January 1992 to June 2008.

Target variable West Texas
intermediate
crude oil
prices (WTI)

Input variables Association with
target variable

R2 p-value

Demand-side Overall amount of world oil demand 0.941 1.12×10−41

Amount of OECD demand 0.373 1.22×10−12

Non-OECD demand 0.605 3.86×10−65

China demand 0.227 6.83×10−59

USA demand 0.365 3.32×10−21

Supply-side OPEC production 0.773 3.49×10−59

Saudi production 0.736 1.67×10−39

Iran production 0.630 2.33×10−40

Iraq production 0.738 1.02×10−8

Kuwait production 0.585 2.32×10−30

Non-OPEC production 0.593 6.57×10−29

USA production 0.554 5.57×10−5

Russia production 0.487 2.67×10−48

World production 0.469 2.23×10−44

Other economic
indicators

Producer price index 0.259 2.98×10−12

U.S. exchange rate 0.663 8.64×10−22

OECD commercial stockpiles 0.669 4.83×10−15

U.S. commercial stockpiles for crude oil 0.326 5.44×10−5

U.S. commercial stockpiles for oil 0.319 2.29×10−5

OPEC surplus production ability 0.206 1.66×10−11

NYMEX oil futures price 0.824 2.37×10−76

Non-commercial real purchase (short) 0.133 1.03×10−4

Non-commercial real purchase (long) 0.194 7.48×10−11

Commercial volume (short) 0.048 1.91×10−4

Commercial volume (long) 0.031 1.30×10−4
4.2. Performance measure (AUC)

To measure the prediction performance, the area under the curve
(AUC), which is defined as the area under the receiver operating char-
acteristic (ROC) curve, is used [14,15]. The ROC curve plots true pos-
itive rate as a function of false positive rate for differing classification
thresholds as shown in Fig. 8. The AUC measures the overall quality of
the ranking induced by model rather than the quality of a single value
of threshold in that ranking. The closer the curve follows the
left-hand border and then the top-border of the ROC space, the larger
value of AUC the model produces; i.e., the more accurate the model is.

4.3. SSL parameter selection

The parameter values of the SSL model, k and μ, the number of
k-nearest neighbors in (1) and the loss-smoothness tradeoff in
(3) were selected from {k,μ}∈{2,3,4,5}×{0.01,0.1,0.3,0.5,0.7,1,10,100}
as optimum combinations through cross-validations. Fig. 9 illustrates
a typical pattern of how the AUC performance of an SSL model would
vary depending on the combinations of parameters k and μ. Every SSL
model in this study found its model-parameters at its best AUC, for in-
stance, the model in Fig. 9 set the values of (k, μ) to (2, 0.1).

4.4. Results on TI transformation and feature extraction

As shown in Section 3.1.1, each of the 26 variables is transformed
into the seven TIs: MA, BIAS, OSC, ROC, K, D or RSI. The parameters for
each TI are set as p∈{3,4,6,8,9,12}. Since a single variable is transformed
to 7 TIs, and each ofwhich has 6 dependent sub-variables, then the total
number of the sub-variables per variable, or simply input dimensional-
ity, becomes 42 (=7 TIs×6 parameter dependent sub-variables). Even
though the use of TI facilitates the consideration of the trends and the
structure of the data, there is, on the other hand, the drawback that
one variable turns into a set of an increased number of sub-variables.
The increased number of input variables means an increase in dimen-
sionality, which degrades the performance of the prediction model.
Thus, as mentioned in Section 3.1.2, feature extraction techniques are
employed: PCA and NLPCA. If we extract a single feature per TI, then
the 6 parameter dependent sub-variables are reduced to one dimen-
sional feature. For PCA, this implies that we use only the first principal
component from the covariance matrix of the 6 parameter dependent
sub-variables. For NLPCA, the network configuration is composed of 6
input nodes in the input layer, 1 hidden node in the bottleneck layer,
and 6 output nodes in the output layer (See the architecture of AANN
in Fig. 4). During the network training, the values of the 6 parameter de-
pendent sub-variables are fed to the network as both input and target.
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Fig. 7. The SSL graph for the 26 sets of time-series variables:WTI is the target variable and the remaining economic factors are input variables. The edge between two nodes represents the
similarity between them.
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After training, the output value of the bottleneck node is used as the
extracted feature. Fig. 10 shows the procedure of feature extraction fol-
lowing TI transformation from a variable, SAUDI.

This process is similarly applied to all of the 26 variables. Then a
node in the graph which corresponds to a variable is represented as
a vector of 7 tuples, e.g., SSAUDI=(s1SAUDI,s2SAUDI,s3SAUDI,s4SAUDI,s5SAUDI,
s6SAUDI,s7SAUDI). The similarity (edge-connection) between the nodes
is built from (1). Fig. 11 exemplifies how the connections between
the 26 variables are made from 7-tuple vector-representation. The
size of vector can vary depending on how many features are
extracted. If we set the number of extracted features to three, then
a variable is represented as a vector of 21 tuples, S=(s11, s12, s13, s21,
s22, s23,…, s51, s52, s53,…,s71, s72, s73). However, it is difficult to determine
the number of extracted features when the intrinsic dimension is un-
known. In the experiment, we attempted to find the optimum number
of extracted features among 1, 3 and 6, which respectively led to 7, 21
Fig. 8. ROC curve.
and 42 input dimensionality per variable (=7 TIs×{1, 3, 6} features
extracted from 6 parameter dependent sub-variables).

In the following Fig. 12 and Table 3, the AUC values of the seven
SSL models are compared: SSL0, SSLP1, SSLP3, SSLP6, SSLN1, SSLN3 and
SSLN6. The designations were determined based on whether PCA or
NLPCA was used and the number of extracted features. For instance,
SSLP3 means a model made by extracting three features per TI
through PCA and then applying SSL. The input dimensionality is 21
(=7 TIs×1 extracted feature). Likewise, SSLN3 is a model made by
extracting three features through NLPCA. The model designated as
SSL0 refers to a model without the feature extraction procedure,
therefore 6 sub-variables per TI are all used. The input dimensionality
of SSL0 is 42 (=7 TIs×6 parameter dependent sub-variables).

The average AUC of SSL0 using 42 sub-variables is 0.84. A notable fact
is that SSLP1 almost reproduces the performance of SSL0with only 7 fea-
tures with the average AUC of 0.83. Overall, the performances of the
Fig. 9. The AUC over model-parameters variation (k and μ) using the SSL model.
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Fig. 10. The procedure of feature extraction following TI transformation.
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SSLPmodels are similar to the performance of the SSL0 models. The per-
formances of the SSLN tend to be somewhat inferior. The results that the
SSLP models are better performed than the SSLN models give us a hint
that the 6 parameter dependent variables would be rather linearly cor-
related since they are derived from an identical TI formula, e.g. MA(p)
where p={3,4,6,8,9,12}, and also see Fig. 10. Among the SSLP models,
SSLP3 shows the best performancewith an average AUC of 0.86. The op-
timum number of extracted features is usually determined by a
trial-and-error fashion. However, related to our experimental setting
for the number of extracted features {1, 3, 6}, we may conjecture that a
single feature would not be sufficient to explain the variability among
the 6 parameter dependent variables whereas 6 features would just re-
construct the original input space into the feature space without the ef-
fect of dimensionality reduction and thus no effect of noise reduction.
Using 3 extracted features would be a compromise between both ends.
To summarize, if feature extraction is used, performances similar or su-
perior to the original performance can be expected even with smaller
numbers of variables and, in particular, PCA was more effective than
NLPCA in our experiment.

4.5. Results of the comparison: SSL vs. other models

In this experiment, SSLP3 was compared with five well known repre-
sentative models: an auto-regression (AR) model, a logistic regression
(LR)model, an ANNmodel, and two SVMmodels, SVM_RBF and SVM_POLY
using RBF kernel function and polynomial kernel function, respectively.
The optimummodel parameterswere selected for each of thefivemodels
in Section 4.2 in a similar way to that done for SSL. The resultant AUC
values of the six models are summarized in Table 4 and Fig. 13. First, AR
and LR showed average AUC values of 0.53 and 0.55, respectively, which
are much smaller than the AUC average of 0.86 for the proposed SSLP3.
This indicates that the time-series models, based on existing linear
models, have limitations in explaining the irregular patterns of oil price
movement. Although ANN and SVM showed average AUC values of 0.74
and 0.66, respectively, which indicated their superior accuracy compared
to that of AR and the LR, they showed relatively poor results compared to
SSLP3. The superior generalization ability of SSL compared to that of ANN
and SVM was attributed to the fact that SSL uses not only one-to-one
relationships between the target variable WTI and the input variables
(demands, supplies and other external economic factors) but also the in-
trinsic inter-relationships between the input variables. This enabled the
SSL to perform more accurately than others. Fig. 14 presents how SSLP3
fits the ups and downs of the WTI oil prices during the test period of
May 2001 through June 2008. The thicker line indicates theWTI oil prices
and the thinner line its three-monthmoving average, i.e., MA3(WTI). The
figure shows that the predicted value fits the ups and downs of the price
movement reasonably well.

5. Conclusions

This paper has proposed a novel method for oil price prediction
using the SSL algorithm. The proposed method modifies the existing
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Fig. 11. Similarity (edge-connection) calculation from 7-tuple vector-representation.
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SSL algorithm for application to time-series prediction, including
measuring the similarity between different sets of time-series data
and the labels of pricing ups and downs, and the advanced techniques
using TI transformation and feature extraction. The advantages of the
proposed method can be summarized as follows. First, the modified
SSL considers not only the influence of input variables on the target
variable but also the mutual influences among the input variables.
For our oil price prediction problem, the WTI crude oil prices were
predicted by taking into account the influence of external economic
factors such as demand-side factors, supply-side factors, and various
types of international economic index. The economic factors
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Fig. 12. Comparison of AUC for seven different SSL models. The numbers under the graph
stand for the number of the extracted features through PCA or NLPCA. The squares indicate
the best AUC after repetition of experiments under every combination of parameters {k,μ},
the circles indicate the average AUC and the triangles indicate the minimum AUC.
including the oil price were represented as nodes in a network, and
connected via similarities between them. Then prediction on the
WTI crude oil price was made by the propagated influence of its
neighboring economic factors through the connections. This enables
to resolve the complexity and irregularity of oil price prediction prob-
lem caused by its intrinsic dynamics interacting with many global or
national economic factors, and results in more accurate prediction
than that offered by the existing representative prediction models.
Second, by transforming time-series data into TIs, the noise in the
data was removed and the underlying tendencies and structural fac-
tors for the variations were revealed. Third, by using feature extrac-
tion, only the few features that are commonly intrinsic among input
variables were used in the modeling, which avoided any unnecessary
increases of the input dimensionality. The synergy effect of these
three advantages were harmonized in our SSL model-based oil price
prediction, and afforded an AUC accuracy of 0.86, which is an unprec-
edented performance. The proposedmethod is expected to be applied
to any domain that requires time-series prediction, i.e., the prediction
of international oil prices, domestic/foreign stock price indices, price
variability, national growth rates and currency exchange rates. Tech-
nically, the proposed method can be more sophisticated with respect
Table 3
AUCs summary for seven different SSL models.

AUC Max Avg Min

SSL0 0.86 0.84 0.76
SSLP1 0.85 0.83 0.77
SSLP3 0.88 0.86 0.77
SSLP6 0.86 0.85 0.77
SSLN1 0.84 0.83 0.81
SSLN3 0.82 0.80 0.77
SSLN6 0.75 0.74 0.72
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Table 4
AUCs comparison of SSL vs. the five competing models.

AUC Max Avg Min Rank

SSLP3 0.88 0.86 0.77 1
AR 0.54 0.53 0.52 6
LR 0.64 0.55 0.49 5
ANN 0.82 0.74 0.55 2
SVM_RBF 0.78 0.73 0.67 3
SVM_POLY 0.74 0.58 0.50 4
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Fig. 13. Comparison in AUC: SSL versus the five competing models.
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to feature extraction procedure. PCA/NLPCA can be replaced with in-
dependent component analysis (ICA) as in [23], and a combining ap-
proach of multiple features can be an alternative of choosing one of
them [36]. Applying and adapting our method to diverse domains
and techniques will be well worth further research.
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