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Abstract

Motivation: Polypharmacy side effects should be carefully considered for new drug development. However, consid-
ering all the complex drug–drug interactions that cause polypharmacy side effects is challenging. Recently, graph
neural network (GNN) models have handled these complex interactions successfully and shown great predictive
performance. Nevertheless, the GNN models have difficulty providing intelligible factors of the prediction for bio-
medical and pharmaceutical domain experts.

Method: A novel approach, graph feature attention network (GFAN), is presented for interpretable prediction of pol-
ypharmacy side effects by emphasizing target genes differently. To artificially simulate polypharmacy situations,
where two different drugs are taken together, we formulated a node classification problem by using the concept of
line graph in graph theory.

Results: Experiments with benchmark datasets validated interpretability of the GFAN and demonstrated competitive
performance with the graph attention network in a previous work. And the specific cases in the polypharmacy side-
effect prediction experiments showed that the GFAN model is capable of very sensitively extracting the target genes
for each side-effect prediction.

Availability and implementation: https://github.com/SunjooBang/Polypharmacy-side-effect-prediction.

Contact: smalsunjoo@ajou.ac.kr or shin@ajou.ac.kr

1 Introduction

Polypharmacy, the use of multiple medications, is a therapeutic ap-
proach to treat many diseases, such as heart failure, metabolic syn-
drome and diabetes (Lien et al., 2002). Because these diseases occur
in complex mechanisms, it is effective to target multiple risk factors
via polypharmacy (Grundy, 2006). However, side effects of poly-
pharmacy should be carefully considered. Side effects of polyphar-
macy emerge from drug–drug interactions, in which the activity of
one drug may change, favorably or unfavorably, if taken with an-
other drug (Jia et al., 2009; Lehár et al., 2009). However, consider-
ing all the complex interactions is challenging, so the machine-
learning can be an efficient approach to deal with this problem.
Nowadays, the artificial neural network, which is a basis of deep
learning, has been used in diverse and complex problems, including
pharmaceutical drug-discovery research and drug mono- and combo
side-effect prediction (Cao et al., 2018; Shahid et al., 2019; Sutariya
et al., 2013).

Also, the polypharmacy side effects prediction problem which is
a main problem of our research has been dealt in several research.

Zitnik proposed Decagon to predict polypharmacy side effects with
a multi-relational link prediction model in multimodal networks
(Zitnik et al., 2018). In the model, a graph neural network (GNN) is
employed, which includes drugs as nodes and drug–drug interac-
tions as edges in the graph. Each node in the graph has node features
representing target genes. The GNN-based convolutional encoder
structure trains a model to compress the information into an incom-
prehensible vector. Also, there are research dealing with the drug–
drug interactions in terms of knowledge graph (Malone et al., 2018;
Nová�cek and Mohamed, 2020; Wang et al., 2020). They also com-
monly used embedding models to represent the graph structured
data including entities, and relations. Then, the embedded low-di-
mensional vector was input to convolution neural network based
models for the prediction. However, this embedding process makes
the model blind when it comes to explaining the prediction results.
To convince the domain experts about the resulting side effects, in-
telligible factors which significantly contribute to the prediction
should be provided.

Interpretable prediction pursuing explainable artificial intelligent
(XAI) has been a crucial issue lately in machine-learning research
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(Gunning, 2017; Ribeiro et al., 2016; Xu et al., 2015). This especial-
ly applies in the field of biomedical informatics because the domain
experts such as clinicians or new drug-development researchers can

be convinced by the outcomes of the machine learning models when
valid grounds are supported (Holzinger et al., 2017; Tjoa and Guan,

2019). Even though the predictive model was revealed to be accur-
ate by performance measures, intelligible factors contributing to the
prediction must be provided to enlighten them, and moreover to as-

sist their decision-making.
In this study, we aim to provide interpretable polypharmacy

side-effect predictions. The proposed method is based on graph at-
tention networks (GAT), which was developed to deal with graph-

represented data (Veli�ckovi�c et al., 2017). But it is not enough to
have function of interpretability. Technically, interpretability means
that a model provides intelligible factors with outputs, which makes

connections between the predictive result and the input features. In
the proposed method, input features are assigned differentiated im-
portance, and those of significance are regarded as intelligible fac-

tors. This implements interpretability for the predicted results of the
model. Hereafter, the proposed model is denoted as Graph Feature

Attention Network (GFAN) emphasizing the novel function of
interpretability.

Section 2 explains the background and the models of explainable
artificial neural network (Holzinger et al.) and GNN, which will
ease understanding of our model in the following section. Section 3

introduces GFAN. Experiments on polypharmacy side effects are
described in Section 4, following validation of GFAN. Section 5 con-

cludes with limitations and future work for this topic.

2 Background

2.1 Explainable ANNs
Generally, it is still challenging to make neural network models to

be interpretable because the non-linearity makes the model as a
black box. There have been previous works about explaining the
neural network in three categories. Gradient-based methods, such as

deep learning important features (DeepLIFT) and SHapley Additive
exPlanations (SHAP) are used to provide fundamental solution by

examining the values in the neural network structure (Lundberg and
Lee, 2017; Shrikumar et al., 2017). However, there exist drawbacks,
as the problems are limited to the specific functional cases. On In

contrast, model-agnostic methods, such as Local Interpretable
Model-agnostic Explanations (LIME), and Randomized Input

Sampling for Explanation of Black-box Models (RISE), treat the ori-
ginal predictive model as a black box (Petsiuk et al., 2018; Ribeiro
et al., 2016). Because they only observe how inputs affect to the out-

puts after predictions, they can be applied to any machine learning
model. Recently, attention mechanism-based methods have stimu-
lated many studies. The attention mechanism was first presented for

machine translation with a recurrent neural network encoder-de-
coder structure (Bahdanau et al., 2014; Xu et al., 2015).

2.2 Explainable GNNs
After the previous trials described above, GAT was developed to
deal with the graph-represented data (Veli�ckovi�c et al., 2017). The

GAT model performs node classification for a targeted node by
attending its neighborhoods’ features while assigning different
weights to different nodes in a neighborhood, which has opened the

possibility of model interpretability. However, it remains at attend-
ing neighbor nodes, which are the same level of the targeted predic-

tion, whereas the node features are at a deeper level. Previously, an
interpretable graph convolutional neural network, GNN explainer,
was available. It is a model-agnostic method for nodes, graph classi-

fication and link prediction. GNN explainer used mutual informa-
tion formulation to measure the importance of each features and
presented subgraph and sub-node features (Ying et al., 2019).

3 Materials and methods

To handle the polypharmacy side-effect prediction problem, we pro-
posed novel neural network based model GFAN with enhanced in-
terpretability. Main function of the proposed method GFAN is to
interpret the predictive results comparing to the previous general
GAT. Shortly, GFAN model can tell which target genes are signifi-
cantly contributing to the polypharmacy side-effect prediction. In
mathematical formulation, portion of target genes (important fea-
tures) can be highlighted by the d which is defined by reflecting
changes of prediction error when each feature removed step by
step.Figure 1 depicts the overall process. We constructed a drug–
drug interaction network based on polypharmacy side effects. Then,
to artificially simulate polypharmacy situations, where two different
drugs are taken together, we combined the two drug nodes into the
one polypharmacy node. Finally, the GFAN model predicts the poly-
pharmacy side effect of the two nodes.

3.1 Drug network construction
A drug network G ¼ ðV;RÞ consists of nodes vi 2 V indicating
drugs, where each node has a node feature vector ~hi (2 R

1�FÞ that
represents drug target genes, as shown in Figure 1a, where F is the
number of target genes. When a drug has a set of target genes, the
node feature vector has value 1 at the location corresponding to the
target genes and 0 at the others. Two different nodes, vi and vj, can
be connected by an edge rij 2 R if they have polypharmacy side
effects. This work is a multi-label prediction problem because mul-
tiple combo side effects can exist simultaneously.

3.2 Polypharmacy network construction
Polypharmacy side-effect prediction has been considered generally
as a link-prediction problem. Because the polypharmacy side effect
is represented as an edge in the drug network. In this study, how-
ever, we transform the drug network into a polypharmacy network
to formulate this problem as a node classification. This strategy is
for the enhanced interpretability when the model predicts polyphar-
macy side effects. To find significant target genes for predicting a
certain polypharmacy side effect, we should compare the contribu-
tions of them. In the polypharmacy network, the contributions can
be measured because the target genes (node features) naturally rep-
resent the properties of the polypharmacy (node). Therefore, we
transform the drug network to a polypharmacy network by imple-
menting the concept of line graphs in graph theory. A line graph
LðGÞ includes the nodes of graph LðGÞ are the edges of graph G
(Harary and Norman, 1960; Mason and Verwoerd, 2007). That is,
polypharmacy edges in the drug network become nodes in the poly-
pharmacy network. Then node features are combined, and the nodes
are connected with edges when they have common drugs. For ex-
ample, as you can see in Figure 1a and b, polypharmacy of the two
drugs v1 and v3 becomes a new single node v½1;3� with node feature
h 1;3½ � ¼ 2; 1;0; 1; 0½ � from the combination of the two node features
h1 ¼ ½1; 1; 0;0; 0� and h3 ¼ ½1; 0; 0;1;0�. Node v½1;3� has a label of
polypharmacy side effect r½1;3�. In this way, we can artificially simu-
late the situation of taking two different drugs together while con-
joining the individual drug properties (target genes).
Simultaneously, we can facilitate interpretable prediction by
explaining each drug’s properties in the node features. Sections 3.3
and 3.4 discuss the novel proposed method GFAN, which is used for
the node classification problem (Fig. 1c).

3.3 Graph attention network
Previous research on GAT by Petar Veli�ckovi�c et al. (2017) moti-
vated our work. The GAT model performs node classification for a
targeted node by attending over their neighborhoods’ features while
assigning different weights to different nodes in a neighborhood
(Veli�ckovi�c et al., 2017). As an expanded research, we propose
GFAN to facilitate interpretable prediction by emphasizing node
features differently during the model training process. We begin by
explaining the structure of GAT. In a layer of the GNN, node fea-
ture h ¼ ~h1;~h2; . . .~hN

n o
;~hi 2 R

F with feature dimension F is fed
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into the network and new node feature h
0
¼ ~h

0

1;~h
0

2; . . .~h
0

N

n o
;~h

0

i 2
R

F
0

is produced as an layer output. Then, attention function a :

R
F � R

F
0
! R is applied to W~hi to obtain the attention coefficients.

Let eij ¼ aðW~hi;W~hjÞ ¼~aT ½W~hijjW~hj� denotes an attention coeffi-

cient with learnable linear transformation weight matrix W 2 R
F
0 �F

and~a denotes a parameterized weight vector. The normalized atten-
tion coefficient using the softmax function is defined as follows:

aij¼softmaxi eijð Þ¼
exp LeakyReLU ~aT ½W~hijjW~hj�

� �� �
P

k2N i
exp LeakyReLU ~aT ½W~hijjW~hj�

� �� �: (1)

As a result, we can have layer output h
0

in a shared attentional
mechanism, as follows:

~h
0

i ¼ r
X

j2N i
aijW~hj

� �
; (2)

where N i denotes neighborhoods of node i and r is a non-linear ac-
tivation function.

3.4 Graph feature attention network
In GFAN, the model is trained while emphasizing several node
features but all features with feature importance d ¼ fdk

i g with
datapoint i and feature k ðd 2 R

N � FÞ. The feature importance d
is a sort of masking parameter which is multiplied by original
feature matrix H, resulting in the following output
representation:

~t
0

i ¼ r
X

j2N i
aijWð~hj8dijÞ

� �
! T

0 ¼ r ÅðH8dÞW
� �

; (3)

where 8 represents element-wise multiplication. H8d refers the
modified input such that important features are highlighted while
unimportant features are downplayed for prediction. The modi-
fied input produces emphasized output T after the next training
epochs. To define the feature importance d, the statistical concept
of stepwise feature selection has been borrowed (Steyerberg
et al., 1999). That is, we observe the changes in the error when
one feature is removed from the original input node feature. If
the error increases in comparison with a base result which has
the full feature input, the removed feature can be considered as
important one for the prediction, and vice versa. To reflect this
concept, we calculated the proportion of the errors between E�k

and E0:

d ¼ k k ¼ 1F
E�k

E0

� �
; (4)

where k represents concatenation, so we can have a vector of all
features. E0 denotes error which is calculated after a feedforward

GAT model with full input node features (a base result).
Furthermore, E�k is achieved by the same GAT model (with the
same initialization) with input excluding the kth feature. Sk 2
R

N � F indicates matrix of ones with zeros in kth column. The effect
of the kth feature is removed by assigning 0 values to the kth column
of S. For example,

S1 ¼
0 1 1
0 1 1
0 1 1

8<
:

9=
; in case of k ¼ 1. (5)

The output ŷ�k is

ŷ�k ¼ r ÅðH8SkÞW
� �

; (6)

the error E�k and E0 are

E�k ¼ L ŷ�k; yð Þ; k ¼ 1;2; . . . ; Ff g (7)

and E0 ¼ L r ÅHWð Þ; y
� �

. ŷ�k is a predicted output while y is an ac-
tual output. After calculation of d from errors, we apply the modi-
fied input H8d to the model again, as follows:

E ¼ L T
0
; y

� �
: (8)

The error is calculated after every epoch. Categorical cross-en-
tropy loss with softmax output is used for the classification
model. In the multi-label classification task (our polypharmacy
side effect case), we need to modify the activation function of the
model and loss function. With the sigmoid activation function at
the output layer, the neural network models the probability of
each class as a Bernoulli distribution. We use binary cross-entropy

loss, which is L ¼ �
PC

i yilogðtiÞ, yi is a ground truth and ti is the
ith element of the output logit vector with C classes, to penalize
each output independently. Finally, we define the feature import-
ance score Ik as

Ik ¼
XN
i¼1

dk
i � 1

� �2

for dk
i > 1: (9)

dk
i represents the feature importance for each class and each data

point, and the sum of variance of dk
i is expressed as a measure of

feature importance score. An important condition for feature im-
portance score is that the feature importance is distinguishable
according to the classes. This condition can be reflected by check-
ing the variance of feature importance dk

i > 1. A feature with a
large variance among feature importance values that are larger
than one has the largest feature importance score. Thus, we are
able to present the relatively important features from the model in
order.

Fig. 1. Overall process: In this study, we propose a novel approach for polypharmacy side-effect prediction with enhanced interpretability based on GFAN. (a) Drug network

construction: For the first time, we constructed drug–drug interaction network, including polypharmacy side effects information on edges ðr 1;3½ �Þ between drug nodes ðv1; v3Þ,
where each node has node feature of target genes. (b) Polypharmacy network construction: Secondly, we transform the drug network to a polypharmacy network by imple-

menting the concept of line graphs in graph theory. Every edge in the drug network becomes nodes in the polypharmacy network. That is, polypharmacy nodes ðv 1;3½ �Þ is cre-

ated and their node features are combined target genes. And they are connected with edges when they have common drugs. (c) Then, the proposed method GFAN predicts the

multi-label for the polypharmacy side effects, and extracts features that contribute significantly to the prediction
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4 Experiments

We conducted two types of experiments. Preferentially, we carried
out benchmark experiments for model validation. Before applying
the proposed method GFAN to the polypharmacy side-effect predic-
tion problem, it is essential to verify whether the model is adequate
and reasonable for the interpretable prediction. GFAN was designed
for the node classification problem. Therefore, it is proper to valid-
ate its performance (for training, and interpretability) with the
benchmark datasets for the node classification problem such as
IRIS. After the model validation experiment, we applied the model
to polypharmacy side-effect prediction experiment. As described in
Figure 1b, we changed the whole ‘drug network’ into one ‘polyphar-
macy network’ to consider the polypharmacy as nodes. Therefore,
validating GFAN with the node classification datasets is proper for
the polypharmacy problem (Fig. 2).

4.1 Benchmark experiments for model validation
For model validation, we used three well-known benchmark data:
IRIS, Digit and USPS. IRIS dataset has 150 data points of iris and
four features of petal length, petal width, sepal length and sepal
width. We constructed IRIS network which has 150 nodes with 4-di-
mensional node features. To construct the connection between the
nodes with edges, we used Gaussian kernel function for similarity
measure among 150 data points and made R

150 � 150 similarity ma-
trix. Then, we ranked the similarity values of the pairs in descending
order and left top 28% to make sparse network (3130 edges among
11 175 possible edges). In the same vein, we constructed Digit and
USPS networks, as shown in Table 1.

4.1.1 Training trend of GFAN using IRIS comparing to the GAT

To validate the GFAN model, we monitored the trend of the train-
ing error along with the GAT model which is proved to be well-per-
form on network data. Generally, if the training error gradually
decreases according to the training epoch, the model is considered
well-trained. As shown in Figure 3, we plotted training error results
in two ways: the averages of experiments repeated 100 times (thick
line) and the best cases (thin line) for both GFAN and GAT, which
were applied to the IRIS network. The GAT model was trained for
300 epochs with a full batch. The GFAN model was trained with
the same initial weights and input; however, unlike that for

GAT, the input was changed every 100 epochs. In more detail,
after the GFAN model was trained for 100 epochs (same as the
GAT model), the resulting model was trained for another 100
epochs with modified input, which was multiplied by the feature im-
portance. AVR_GAT showed stable decreasing trends. Even though
AVR_GFAN showed two picks meaning that the GFAN model was
needed to adapt to the modified input, it was clear that the training
error of the GFAN model converges to the point near training error
of GAT model eventually. Also, test error is shown to be stable for
both models. Additionally, we point out that an interesting result
was drawn from the one of our experiments (depicted as best case).
At the second pick of the BEST_GFAN, the training error decreased
dramatically. This means that the GFAN model could escape from

Fig. 2. GFAN architecture: GFAN obtains a subgraph H for a single polypharmacy side effect. H is inputted to a general GAT model to produce error E0. At the same time,

the H is multiplied by Sk to eliminate features one by one ðk ¼ 1; . . . ; FÞ, then the produced F inputs are inserted into the GAT model to produce F error E�k. Then, we calcu-

late feature importance d by the proportion of error change E�k=E0. Then, the modified input H8d is repeatedly inserted into the procedure to determine feature importance.

We defined the epoch inside of the dotted box as the inner epoch, and the repetition (dotted blue arrow) as the outer epoch

Table 1. Network information of benchmark dataset

IRIS DIGIT USPS

Node 150 1500 1500

Node feature 4 241 241

Edge 1490 120 802 118 704

Class 3 2 2

Fig. 3. Training loss for IRIS data classification
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the local optimum and search for a more optimal solution. This is
one of the future works to improve GFAN model as a better node
classification problem.

4.1.2 Interpretability of GFAN

Figure 4a shows feature importance of four features in IRIS dataset:
sepal length, sepal width, petal length and petal width. We plotted
the feature importance d after second outer epoch. d are centered
around 1 because we defined the feature importance as the ratio of
two errors in Equation (4). That is, if the d is larger than 1, the cor-
responding feature is relatively more important to the prediction.
Reversely, if the d is equal to or smaller than 1, the corresponding
feature is relatively unimportant or less important than other fea-
tures. As a result, we can see that petal length is the most important
feature to classify the data of the setosa group (1–50 data points)
from other data. The petal length and sepal length are both import-
ant for the data of versicolor group. Lastly, sepal length, sepal width
and petal width are revealed to be important for virginica group.
Thus, the GFAN model can define feature importance scores per
datum, and eventually per class. The feature importance score I of
four features for the IRIS dataset is 0.1234 for petal length, 0.0001
for petal width, 0.0629 for sepal length and 0.0068 for sepal width.
The petal length was the most important feature for classification
among these four features. Figure 4b is the result of a noise experi-
ment conducted by adding one noise feature to the original IRIS
dataset. The noise feature was generated by adding Gaussian noise
to the original sepal length feature. The importance score of the
noise feature is expected to be less than 1, as the noise feature should
not affect the prediction of IRIS classes. As a result, we could see
that the GFAN model successfully achieved an importance score of
less than 1 for all data points of the noise feature (thick black line).

4.1.3 Performance of GFAN for benchmark datasets

To validate the general performance of GFAN model of benchmark
datasets, we measured the test accuracy. We performed five cross-
validation for each experiment and the test accuracy of the three
datasets was 0.9068 for IRIS, 0.8940 for DIGIT and 0.955 for
USPS. As a result, we could ensure that the proposed GFAN model

is valid for the node classification problem based on the benchmark
experiment.

4.2 Polypharmacy side-effect prediction
The goal of this experiments is to predict polypharmacy side effects
by applying the proposed GFAN model to the polypharmacy net-
work and to provide intelligible factors which are target genes for
the prediction. The problem was formulated as a node classification
in implementing line graph concept.

4.2.1 Datasets

The original polypharmacy side effect graph datasets were down-
loaded from http://snap.stanford.edu/decagon from Zitnik’s work.
They had been organized after collection from the Side effect
Resource (SIDER), OFFSIDES and TWOSIDES databases (Kuhn
et al., 2016; Tatonetti et al., 2012). In brief, there are over
4 649 441 combo side effects among 639 drugs. Multiple combo
side effects can exist simultaneously among 1308 types of side
effects. Also, there are over 18 689 interaction data between drug
and target genes, for 284 drugs and 3648 target genes. Practically,
among the datasets provided by Zitnik’s work, we utilized two data-
sets ‘bio-decagon-combo’ and ‘bio-decagon-targets’ to construct the
drug network (see Section 3.1 and Fig. 1a). The details of the con-
structed drug network are shown in Table 2. The bio-decagon-
combo includes polypharmacy (edges) and polypharmacy side
effects (edge label) data. And the bio-decagon-targets includes target
genes (node feature) data and listed drugs in this file to define nodes
in the drug network. Then we transfer this drug network to poly-
pharmacy network (see Section 3.2 and Fig. 1b). Therefore, from
here on out, nodes are polypharmacy, node label is polypharmacy
side effects. And node features are combined target genes of two
drugs as explained in Section 3.2. The two polypharmacy nodes con-
nected when they have common drugs. Therefore, the polypharmacy
network which is an input of the GFAN had 14 247 nodes, 3648
node features and 1308 classes. For experiments, we used 80%
nodes in the network for training, 10% for validation and 10% for
test purposes.

Fig. 4. Feature importance trends for three groups (setosa, versicolor and virginica) of IRIS data

Table 2. Details for the drug network and the polypharmacy network

Drug network Polypharmacy network

Node Drug 284 Polypharmacy 14 247

Node label – – Polypharmacy side effects 14 247 � 1308

Node feature Target genes 284 � 3648 Combined target genes of two drugs 14 248 � 3648

Edge Polypharmacy 14 247 � 2 Relation of common drugs 14 248 � 14 248

Edge label Polypharmacy side effects 14 247 � 1308 – –

Polypharmacy side-effect prediction with enhanced interpretability based on graph feature attention network 2959
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4.2.2 Experimental setup

A GFAN model was build based on a general GAT model, which
consists of two layers (Veli�ckovi�c et al., 2017). The classification
layer followed by one attention layer and the parameters were set as
follows: 8 attention heads computes 8 features each (that is total 64
features). Learning rate is 0.001 and dropout rate for each layer is
0.6. After training the general GAT model for 100 epochs, we com-
puted a feature importance d1 with the k þ 1 errors which were
computed by applying k inputs eliminating kthfeature to the trained
model (see Section 3.4). Then we continue to train the model with
the changed input H8d1. We repeated the above process two times
so that d2 and d3 were defined. That is, 100 epochs repeated 3 times
(total 300 epochs). For the performance comparison, we trained the
general GAT for 300 epochs with the same initial weight. Finally,
third d was used for explaining the predictions.

4.2.3 Performance of GFAN for polypharmacy side-effect

prediction

Figure 5 shows training loss and validation loss for the GFAN and
GAT model: GFAN training loss (thick red line), GFAN validation
loss (thin gray line), GAT training loss (thick blue line) and GAT
validation loss (thin black line). We found that the loss got smaller
every 100 epochs comparing to the general GAT, when the trained
model (up to the previous epoch) continued to be trained with H8d1

and H8d2. Eventually, the training and validation loss at 300 epochs
were 0.224 and 0.221 for GFAN model, and 0.207 and 0.205 for
GAT model.

In multi label classification problem, we can have AUC per mul-
tiple classes. In Table 3, side effects which have the highest AUC for
the test sets were listed. The last column is the number of polyphar-
macy (drug pairs) related to the side effects.

4.2.4 Case example

GFAN model defines feature importance related to each classifica-
tion label, that is polypharmacy side effects. If two pairs of drugs
have disparate labels of polypharmacy side effects, the GFAN model
could present different sets of target genes. Figure 6 shows how we
set up an experiment for this problem. For the specific case, we
chose CID 5090 (rofecoxib), which has combo side effects with 466
other drugs. Hereafter, other drugs which have combo side effects
with the CID 5090 is denoted as paired drug. First, we calculated
the Jaccard distance among the 466 combo side effect vectors
(2 R

1317Þ. Then, we selected the most different pairs with the largest
distance. Simultaneously, we tried to select paired drugs that have a
small number of target genes to compare easily influence from the
drugs. As shown in Figure 6a, two combo side effects r 2955; 5090½ � and
r 1065; 5090½ � among v5090, v2955 and v1065 (CID 2955; Dapsone and
CID 1065: Quinidine, dotted line) are selected. The r 2955; 5090½ �
includes 184 combo side effects (back ache, asthma and autonomic

neuropathy etc.). r 1065; 5090½ � includes 45 side effects (anxiety, drow-
siness and psoriasis etc.). And v5090 has 167 target genes and other
two nodes (v2955 and v1065) have single target gene. As described in
Figure 6b, we combined the two pairs of node features into
v 2955; 5090½ � and v 1065; 5090½ �. v 2955; 5090½ � has 90 neighbor drugs and
v 1065; 5090½ � has 186 neighbor drugs. The experimental setup for
GFAN model is as follows. Input: compound target genes (637
drugs and one combined node 2 R

638 � 3648), label: polypharmacy
side effect of combined drugs, inner epoch: 10 000, and outer epoch
(feature importance update): 3. Figure 7 shows the resulting feature
importance of the specific case. The two resulting feature import-
ance scores are extremely different, even though v2955 and v1065 each
have only one target gene. Therefore, the GFAN model is capable of
very sensitively extracting the target genes for each side-effect
prediction.

The three most important genes for predicting polypharmacy
side effects of v 1065; 5090½ � are Entrez ID 134, 136 and 9283, which
are ADORA1, ADORA2B and GPR37L1, respectively. For
v 2955; 5090½ �, they are Entrez ID 1816, 4987 and 59340, which are
DRD5, OPRL1 and HRH4. Table 4 is evidence that the extracted
target genes are related to the predicted polypharmacy side effects
from the literatures. For example, we found the report about rela-
tions between asthma and ADORA2B. they reported that expression
of ADORA2B is increased in monocytes obtained from patients
with BA and are associated with the generation of
CD14posCD209pos pro-inflammatory cells. A positive correlation
between expression of ADORA2B and IL-6 was identified in human
monocytes and may explain the increased expression of IL-6 mRNA
in asthmatics.

5 Conclusion

In this study, we proposed GFAN, a novel model for interpretable
prediction of polypharmacy side effects. This model provides im-
portant features that significantly contribute to prediction.
Technically, to artificially simulate polypharmacy situation, we used
the line graph concept in graph theory. The significant features,
which are target genes in this case, are intelligible to convince the

Fig. 5. Training and validation loss for the GFAN and GAT model

Table 3. AUC per side effects

AUC Side effects Side effects name Number

0.974 C0340274 Pregnancy induced hypertension 50

0.951 C0242786 High risk pregnancy 40

0.946 C0024421 Macroglossia 91

0.943 C0020545 Renovascular hypertension 5

0.943 C0032580 Familial adenomatous polyposis 23

0.916 C0152020 Gastric stasis 36

0.902 C0042376 Vascular headache 7

0.884 C0010930 Dacrocystitis 10

0.874 C0003834 Arterial insufficiency 99

0.841 C0032305 Pneumocystis carinii pneumonia 114

Fig. 6. Illustration of problem definition for a disparate case: (a) a drug network

including three drug nodes CID 5090, CID 2955 and CID 1065; (b) transformed

polypharmacy network with two polypharmacy nodes v 2955; 5090½ � and v 1065; 5090½ �

2960 S.Bang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/18/2955/6170654 by A-Jou U
niv / M

edical Info user on 08 M
ay 2025



domain experts about the resulting polypharmacy side effects. The
experiment with benchmark datasets reveals that GFAN had a per-
formance comparable to that of GAT in a previous work. This
implies that the GFAN architecture can be more widely used as it
exhibits a superior prediction performance and reasoning function
for the prediction. GFAN provides an importance value for individ-
ual data points. This indicates that each of the polypharmacy side
effects is explained with different target genes. This makes the model
more beneficial for diverse domain problems. Therefore, an experi-
ment with the specific cases shows that the GFAN model is capable
of very sensitively extracting the target genes for each side-effect
prediction.

Limitations and further research are recommended as follows.
One of the limitations of our study is that we only considered side
effects for two drugs. However, patients are prescribed more than 2
drugs in many cases and that is very important. When we implement
the line graph concept as mentioned in method section, modeling
polypharmacy side-effect prediction for more than 2 drugs seems
quite possible by combining more than 2 drugs into one polyphar-
macy node. However, labeling the combined node with polyphar-
macy side effects for more than 2 drugs is practically difficult and
even impossible in our datasets. If we can have enough labels, the
model could be more practical in real world. And the GFAN model
which is a wrapper approach of feature selection method was pre-
destined to have heavy time complexity. Also, the process of defin-
ing important features takes more than F times over general GAT
model (F is the number of features). Finally, the quantitative evalu-
ation results must be developed so that the predicted interpretability
can be supported. Especially, in this specific case, validating the risk
factors causing the side effects are very difficult and requires careful
approach.

Also, the node feature can be diversified with drug properties,

such as classification of health, physical and environmental hazard
data from globally harmonized system of classification and labeling
of chemicals (GHS), and anatomical therapeutic chemical (ATC)

data from the WHO. Diverse features will enrich the interpretability
of side-effect prediction as well as candidate drug–drug relationships

for new drug development. lastly, the methodology of the GFAN
model can be improved to make it more stable from the modified
inputs to reach to the optimal solutions more quickly.

Acknowledgements

This research was supported by Basic Science Research Program through the

National Research Foundation of Korea (NRF) funded by the Ministry of

Science and ICT [2017R1E1A1A03070345]. Also, this research was sup-

ported by a grant [21182MFDS265] from Ministry of Food and Drug Safety

in 2021 and the Ajou University research fund.

Conflict of Interest: none declared.

References

Bahdanau,D. et al. (2014) Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473

Cao,C. et al. (2018) Deep learning and its applications in biomedicine.

Genomics Proteomics Bioinf., 16, 17–32.

Grundy,S.M. (2006) Drug therapy of the metabolic syndrome: minimizing the

emerging crisis in polypharmacy. Nat. Rev. Drug Discov., 5, 295–309.

Gschwandtner,M. et al. (2011) The histamine H4 receptor is highly expressed

on plasmacytoid dendritic cells in psoriasis and histamine regulates their

Fig. 7. Case results of target gene importance d for the two polypharmacy side-effect prediction cases: Blue line is for the combo side effects of 5090 and 1065 drugs. Red line

is for the combo side effects of 5090 and 2955 (Entrez gene id)

Table 4. Evidence for the presented target genes

CID CID Side effect Entrez ID Reference

5090 (rofecoxib) 2955 (dapsone) Back ache 134 (ADORA1) –

Asthma 136 (ADORA2B) Yuryeva et al. (2015)

Autonomic neuropathy 9283 (GPR37L1) Liu et al. (2017)

5090 (rofecoxib) 1065 (Quinidine) Anxiety 1816 (DRD5) Tahir et al. (2000)

Drowsiness 4987 (OPRL1) Le Merrer et al. (2009)

Psoriasis 59340 (HRH4) Gschwandtner et al. (2011)

Polypharmacy side-effect prediction with enhanced interpretability based on graph feature attention network 2961

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/18/2955/6170654 by A-Jou U
niv / M

edical Info user on 08 M
ay 2025



cytokine production and migration. J. Investig. Dermatol., 131,

1668–1676.

Gunning,D. (2017) Explainable artificial intelligence (XAI). Defense Adv. Res.

Projects Agency (DARPA), 2, 2017.

Harary,F. and Norman,R.Z. (1960) Some properties of line digraphs.

Rendiconti del Circolo Matematico di Palermo, 9, 161–168.

Holzinger,A. et al. (2017) What do we need to build explainable AI systems

for the medical domain? arXiv preprint arXiv:1712.09923.

Jia,J. et al. (2009) Mechanisms of drug combinations: interaction and network

perspectives. Nat. Rev. Drug Discov., 8, 111–128.

Kuhn,M. et al. (2016) The SIDER database of drugs and side effects. Nucleic

Acids Res., 44, D1075–D1079.

Le Merrer,J. et al. (2009) Reward processing by the opioid system in the brain.

Physiol. Rev., 89, 1379–1412.

Lehár,J. et al. (2009) Synergistic drug combinations tend to improve thera-

peutically relevant selectivity. Nat. Biotechnol., 27, 659–666.

Liu,B. et al. (2017) Astroglia as a cellular target for neuroprotection and treat-

ment of neuro-psychiatric disorders. Glia, 65, 1205–1226.

Lundberg,S.M. and Lee,S.-I. (2017) A unified approach to interpreting model

predictions. Adv. Neural Inf. Process. Syst., 4765–4774.

Malone,B. et al. (2018) Knowledge graph completion to predict polypharmacy

side effects. In: International Conference on Data Integration in the Life

Sciences. Springer, Berlin. pp. 144–149.

Mason,O. and Verwoerd,M. (2007) Graph theory and networks in biology.

IET Syst. Biol., 1, 89–119.
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