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A B S T R A C T

As an early indicator of dementia, mild cognitive impairment (MCI) requires specialized treatment according to
its subtypes for the effective prevention and management of dementia progression. Based on the neuropatho-
logical characteristics, MCI can be classified into Alzheimer’s disease (AD)-related cognitive impairment (ADCI)
and subcortical vascular cognitive impairment (SVCI), being more likely to progress to AD and subcortical
vascular dementia (SVD), respectively. For identifying MCI subtypes, plasma protein biomarkers are recently
seen as promising tools due to their minimal invasiveness and cost-effectiveness in diagnostic procedures.
Furthermore, the application of machine learning (ML) has led the preciseness in the biomarker discovery and
the resulting diagnostics. Nevertheless, previous ML-based studies often fail to consider interactions between
proteins, which are essential in complex neurodegenerative disorders such as MCI and dementia. Although
protein-protein interactions (PPIs) have been employed in network models, these models frequently do not fully
capture the diverse properties of PPIs due to their local awareness. This limitation increases the likelihood of
overlooking critical components and amplifying the impact of noisy interactions. In this study, we introduce a
new graph-based ML model for classifying MCI subtypes, called eXplainable Graph Propagational Network (XGPN).
The proposed method extracts the globally interactive effects between proteins by propagating the independent
effect of plasma proteins on the PPI network, and thereby, MCI subtypes are predicted by estimation of the risk
effect of each protein. Moreover, the process of model training and the outcome of subtype classification are fully
explainable due to the simplicity and transparency of XGPN’s architecture. The experimental results indicated
that the interactive effect between proteins significantly contributed to the distinct differences between MCI
subtype groups, resulting in an enhanced classification performance with an average improvement of 10.0 %
compared to existing methods, also identifying key biomarkers and their impact on ADCI and SVCI.
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1. Introduction

Mild cognitive impairment (MCI) is a neurodegenerative disorder
that involves cognitive impairment beyond the expected decline in
memory and thinking that comes with normal aging [1]. Although the
clinical symptoms of MCI are not severe enough to interfere with
instrumental activities of daily living, it is an important early indicator
for dementia, as up to half of patients with MCI are known to develop
dementia within five years [2]. Similar as Alzheimer’s disease (AD) and
subcortical vascular dementia (SVD), the two major subtypes of de-
mentia, are distinguished by the neuropathological factors associated
with beta-amyloid (Aβ) deposition and cerebrovascular degeneration [3,
4], respectively, MCI is also classified into its major subtypes, AD-related
cognitive impairment (ADCI) and subcortical vascular cognitive
impairment (SVCI), which involve cortical amyloid burden and
subcortical vascular burden, respectively [5–7]. Compared to patients
with normal MCI (NMCI), patients with ADCI and SVCI entailing
neuropathologic risk factors are more likely to progress to AD and SVD,
respectively [8–12]. Since dementia causes irreversible brain dysfunc-
tion, it requires appropriate prevention and management from the
predementia stage, MCI. Furthermore, clinical treatment for patients
with MCI needs to be specialized according to the subtypes of MCI,
which are distinguished based on neuropathological characteristics.

While MCI patients are primarily evaluated by cognitive function
assessment, additional information such as cerebrospinal fluid (CSF)
biomarker or neuroimaging test is required to classify them into ADCI or
SVCI [13–16]. CSF biomarkers, including Aβ42, total tau, and phos-
phorylated tau, are effective predictors of conversion from MCI to de-
mentia, but they require patients to be under prolonged bed rest for
several hours and are invasive, which can cause rare but serious side
effects [17]. Neuroimaging tests provide objective evidence regarding
the deposition of Aβ and tau tracer with positron emission tomography
(PET) and the determination of hippocampal or medial temporal neu-
rodegeneration with magnetic resonance imaging (MRI), but require
high costs [18]. This approach is also limited in its ability to capture the
complexity of neurodegenerative diseases, which involve a variety of
biological processes, including neuroinflammation, synaptic dysfunc-
tion, and metabolic changes. In contrast, notable advancements have
been made in the field of neurology with the advent of plasma protein
biomarkers as an alternative method of diagnosing and evaluating the
potential pathophysiology of diverse neurodegenerative disorders,
including MCI and dementia. The diagnosis based on plasma protein
biomarkers is less invasive and cost-effective than the use of CSF bio-
markers and neuroimaging tests. The implementation of these bio-
markers within the existing healthcare system can reduce the patient
burden and increase access to testing. As a result, they are widely used
for the diagnosis of a variety of conditions, not just neurodegenerative
diseases [19–22].

Moreover, the application of machine learning has facilitated the
sophisticated identification of plasma protein biomarkers associated
with neurodegenerative diseases and the precise prediction of target
outcomes [23–26]. However, previous studies concentrated solely on
the independent effects of individual proteins, thereby neglecting the
interactions between proteins. This conventional approach fails to
acknowledge the collective contribution of multiple proteins with small
effect sizes to the phenotype due to their interactions. The identification
of plasma protein biomarkers related to diseases based on
protein-protein interactions (PPIs) is crucial for understanding the mo-
lecular pathogenesis of diseases, assessing risk, and classifying diseases
[27]. The advent of high-throughput technologies has led to a rapid
expansion in the data available on PPIs, which now encompasses almost
the entire proteome [28]. Concurrently, network-based methods that
involve PPIs have gained prominence as they allow the application of
machine learning techniques to identify sophisticated biomarkers [29].
Neurodegenerative diseases are a complex disorder that involves the
interactions among specific molecular pathways, making the impact of

PPIs even more significant [30,31]. Therefore, there is a need for a
model that takes into account PPIs within molecular pathways.

Graph convolutional network (GCN) [32] employing PPIs may have
elucidated the underlying subtypes of MCI. In GCN, the features of each
node are aggregated with the features of neighboring nodes via edges
through a graph convolutional layer. This process is applied to the PPI
network, wherein the nodes, edges, and features correspond to the
proteins, PPIs, and expression values derived from blood sequencing,
respectively. Therefore, the extracted features of proteins represent the
interactive effect between proteins, whereby the expression value of
each protein is combined with the expression values of neighboring
proteins in the PPI network. This approach of representing protein
interaction by applying GCN to the PPI network has been employed for a
variety of tasks, including the identification of novel PPIs [33–35], the
classification of disease types [36], and the prediction of cancer sur-
vivability [37]. Furthermore, when examining PPIs, it is imperative to
acknowledge the significant role that indirect interactions between
proteins play in disease progression. Proteins transmit signals to other
proteins at a distance, collectively influencing the progression of certain
diseases. This mechanism suggests that the application of machine
learning to the PPI network should result in the performance of targeted
tasks with a global awareness of PPIs, whereby the full range of inter-
active effects can be extracted by considering the entire PPI network.
However, the graph convolutional operation of GCN is constrained by its
local awareness of PPIs, as it aggregates features only between one-hop
neighboring nodes. This limitation hinders its capacity to capture local
interactions between directly connected proteins within the PPI
network. To address this shortcoming, an extended GCN can be
employed to aggregate features from multi-hop neighbors.

Previously, two major approaches have been employed to extend
GCN for K-order feature aggregation: the multiplied convolution filter
and the parallelized network architecture. The initial approach, based
on the multiplied convolution filter, involves repeatedly multiplying the
normalized adjacent matrix K times, thereby representing the graph
convolution filter as the K-th powered single matrix. This approach was
initially proposed in Simple Graph Convolution (SGC) [38], and has
since been further developed in Exponential Graph Convolution (EGC)
and Linear Graph Convolution (LGC) [39]. While GCN necessitates K
graph convolutional layers for feature aggregation with K-hop neigh-
boring nodes, SGC is streamlined to a single layer through the K-th
powered graph convolution filter. EGC derives the graph convolution
filter by combining the graph Laplacian up to the K-th power with the
coefficients of the exponential power series. LGC applies the graph
convolution filter achieved by a linear combination of graph Laplacian
monomials up to the K-th power. Subsequently, the approach based on
the parallelized network architecture comprises K graph convolution
filters that extend up to K-hop neighboring nodes on the adjacent matrix.
Each filter is utilized in parallel graph convolutional layers for the
purpose of aggregating node features on an individual basis. The most
representative method of this approach is MixHop [40], which in-
troduces a higher-order graph convolutional architecture. This archi-
tecture has been further advanced as the Universal Graph Convolutional
Network (UGCN) [41] and the Mixed-Order Graph Convolutional
Network (MOGCN) [42]. MixHop, UGCN, and MOGCN represent
different approaches to merge node features extracted from parallel
graph convolutional layers, employing simple concatenation, an atten-
tion mechanism, and an ensemble module, respectively.

Extended versions of GCN have the ability to represent a wider range
of PPIs; however, they are limited to fully capture the holistic nature of
the PPI network, which in turn gives rise to several challenges. (1)
Disregarding the structural attributes of the PPI network: the PPI network is
a complex system with a hierarchical structure, comprising sub-
networks. A focus on interactions between adjacent proteins may result
in the overlooking of critical features across the entire network [43,44].
(2) Missing the pivotal components within the PPI network: hub proteins are
pivotal to the interconnections between proteins and exert a significant
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influence on the entire PPI network. However, these components are not
always taken into account in the local PPIs [45]. (3) Emphasizing the
noisy interactions within the PPI network: as the PPI network incorporates
PPI data from various sources, it inherently includes experimentally
noisy interactions. The utilization of local PPIs may result in the over-
estimation of the impact of noisy interactions [46–48]. While extending
the architecture of the GCN-extended model and diversifying its
configuration may mitigate these challenges to some extent, it repre-
sents only a provisional solution that does not achieve a comprehensive
implementation of PPIs. This limitation arises from the fact that the
graph convolution relies on locality, which enables the aggregation of
features between adjacent nodes. To comprehensively address these
challenges and accurately capture the characteristics of the PPI network,
graph neural networks necessitate the use of globality-based feature
aggregation.

In this study, we introduce a novel graph neural network called
eXplainable Graph Propagational Network (XGPN). Central to our
approach is the graph propagational layer, which generates a globally
aggregated feature representation by diffusing the features of each node
across all nodes within the graph. This enables the classification of MCI
subtypes based on plasma protein biomarkers, leveraging the in-
teractions among proteins to accurately reflect the key components and
structural properties of the PPI network. The proposed method is sche-
matically described in Fig. 1. First, we identify plasma protein bio-
markers specific for ADCI and SVCI, MCI subtypes differentiated on the
basis of neuroimaging. Next, we train the proposed model that utilizes
the identified biomarkers to classify MCI subtypes, applying the PPI
network to reflect the global interactions between biomarkers. The
contributions of the proposed method are summarized as follows.

• We propose a novel method called XGPN for MCI subtype classifi-
cation as it is medically important to differentiate MCI, a pre-
dementia stage, into subtypes based on its neuropathological
features.

• ADCI and SVCI are subtypes of MCI based on neuroimaging, and
XGPN utilizes plasma protein data to distinguish between them as a
less-invasive and cost-effective diagnostic tool.

• Differentially expressed proteins for ADCI and SVCI are identified as
biomarkers for MCI subtype classification, and the functional effects
of the biomarkers on each subtype are also analyzed.

• The identified biomarkers are utilized in the training of XGPN, where
the PPI network is applied to reflect the global interactions between
proteins, and explanatory results for the internals and outcomes of
XGPN are also provided.

In the next section, we introduce the study materials representing
information about the participants, the data collected from them. The
methodology section delineates the comprehensive process of MCI
subtype classification, encompassing the identification of plasma pro-
tein biomarkers and the detailed mathematical implementation of
XGPN. The experimental section illustrates the predicted outcomes of

XGPN and compares them with existing methods, including an expla-
nation of the proposed method. The last section concludes the paper
with remarks on the contributions and limitations of the proposed
method.

2. Materials

2.1. Study participants

Participants were recruited from the Biobank Innovations for chronic
Cerebrovascular disease With ALZheimer’s disease Study (BICWALZS)
at Ajou University Hospital (Suwon, Republic of Korea) [49]. Of the
participants diagnosed with MCI according to the expanded Mayo Clinic
criteria [50], we included 244 participants in the study cohort based on
the tests for cognitive function assessment as follows: the mini-mental
state examination (MMSE) of 20 or higher, the global score of clinical
dementia rating (CDR) of 0.5, the CDR sum of boxes (CDR-SB) of 0.5–4,
and the global deterioration scale (GDS) of 2–4. MCI subtypes for study
participants were categorized based on neuroimaging-based diagnostic
markers, with positron emission tomography (PET)-based standard up-
take value ratio (SUVR) for ADCI diagnosis and diffusion tensor imaging
(DTI)-based peak width of skeletonized mean diffusivity (PSMD) for
SVCI diagnosis. There were 47 (19.3 %) participants with ADCI and 30
(12.3 %) participants with SVCI. The study participants were also
divided into the discovery and validation cohorts, where the validation
cohort included participants with 2-year follow-up on cognitive function
assessments, and the remaining participants for whom only baseline
information was available were included in the discovery cohort. As a
result, there were 189 participants in the discovery cohort, including 36
(19.0 %) with ADCI and 23 (12.2 %) with SVCI, and the validation
cohort included 55 participants, consisting of 11 (20.0%) with ADCI and
7 (12.7 %) with SVCI. Demographic and clinical characteristics of the
study participants are summarized in Table 1.

2.2. Data acquisition and processing

2.2.1. Positron emission tomography (PET)
The study participants underwent 18F-flutemetamol PET scans by

using a Discovery Ste/690 PE T/CT scanner (GE, Milwaukee, WI, USA)
with an identical protocol. An intravenous bolus of 18F-flutemetamol
was administered at a mean dose of 185 MBq. Subsequently, a 20-min
PET scan was conducted, comprising four 5-min dynamic frames. The
18F-flutemetamol PET scans were co-registered to the individual MRI
scans, which were normalized to a T1-weighted MRI template. The MRI-
based co-registered 18F-flutemetamol PET images were normalized to
the MRI template using transformation parameters. To quantify the 18F-
flutemetamol retention, the SUVR was obtained by using the pons as a
reference region. Global cortical 18F-flutemetamol retention was calcu-
lated from the volume-weighted average SUVR of bilateral ten cortical
volumes of interest from the frontal, posterior cingulate, lateral tem-
poral, parietal, and occipital lobes using the annotated anatomical

Fig. 1. Schematic description of the proposed method. Differentially expressed proteins for ADCI and SVCI, MCI subtypes distinguished by neuroimaging, are firstly
identified as plasma protein biomarkers. The proposed model is then trained using the identified biomarkers for MCI subtype classification, applying the PPI network
to reflect the global interactions between proteins.
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labeling atlas. Finally, the study participants were classified as ADCI, if
their SUVR values were greater than 6.740 × 10− 1, where the cut-off
value was calculated by using the “cutoff” packages [51] implemented
in R (https://github.com/choisy/cutoff).

2.2.2. Diffusion tensor imaging (DTI)
The study participants also underwent scanning of two-dimensional

EPI diffusion tensor imaging (DTI) that was performed at TR/TE =

8100/87 ms, resolution = 2.5 × 2.5 × 2.5 mm3, number of directions =
64, b-values = 0, and 1000 s/mm2. We quantified the impact of cere-
brovascular burden by calculating a global value of PSMD [52] (http://
www.psmd-marker.com), which is a diffusion-based metric that in-
dicates small vessel disease. The calculation of PSMD was automatically
performed by using the PSMD tool (https://github.com/miac-research/
psmd) comprising DTI skeletonization and histogram analysis. Initially,
DTI scans were skeletonized using the tract-based spatial statistics pro-
cess, a component of the FMRIB Software Library (FSL) [53] (https://fsl.
fmrib.ox.ac.uk), and the FMRIB 1-mm fractional anisotropy (FA) tem-
plate thresholded at an FA value of 0.2. The mean diffusivity (MD) im-
ages were then projected onto the skeleton using the FA-derived
projection parameters, followed by generating FA and MD output maps.
PSMD was then automatically derived from the fully processed diffusion
data as the discrepancy between the 95th and 5th percentiles of the MD
voxel values within the skeleton. Finally, the study participants were
classified as SVCI, if their PSMD values were greater than 4.888 × 10− 4,
which was calculated by using the “cutoff” packages.

2.2.3. Plasma protein assays
Plasma samples from the study participants were profiled by the

Olink Proteomics using proximity extension assay (PEA) technology,
and we used the Olink Target 96 Neurology and Olink Target 48 Cyto-
kine panels in this study. The neurology panel includes the established
92 assays associated with neurobiological processes and neurological
diseases (e.g., neurodevelopment, axon guidance, or synaptic function),
and the cytokine panel contains the selected 45 assays with the highest
relevance for studies of inflammatory diseases, or for investigation of the
inflammatory processes that underly many diseases, covering key
immunological processes. Quality control of the raw data was performed
by using the internal and external controls in the panels. Of the 137
proteins in total, 10 proteins with higher than 10% of missing frequency
were excluded, and the imputation of missing data for the remaining
127 proteins was performed by using the k-nearest neighbor method.
Subsequently, the protein expression levels were standardized by the Z-
score normalization and then transformed by the logistic function for
scaling. The full list of proteins in the two panels and the quality control
results for them are summarized in the Supplementary Tables S1 and S2.

3. Methods

3.1. Overall framework

Fig. 2 depicts the overall framework employed in this study. As
illustrated in Fig. 2(a), this study initially identifies differentially
expressed proteins (DEPs) for each MCI subtype for prediction using
plasma protein data for each MCI subtype, categorized based on neu-
roimaging. Subsequently, XGPN is trained on the data for the identified
biomarkers to classify the MCI subtypes, followed by the performance
evaluation and the model explanation. A schematic representation of
XGPN is provided in Fig. 2(b). As the proposed model aims to classify
MCI subtypes by learning the interactive effects between proteins, XGPN
was applied to the PPI network collected from the STRING database (htt
ps://string-db.org/) [54,55], which encompasses the global interactions
between proteins. The interactive effects are extracted by propagating
the independent effects across the PPI network, and in this process, the
smoothness parameter controls the range of PPIs, determining the extent
to which the independent effects are propagated by XGPN, as repre-
sented in Fig. 2(c). A lower smoothness value indicates that lower-order
PPIs, representing interactions between nearby proteins, are given
higher weight in XGPN. Conversely, a higher smoothness value indicates
that higher-order PPIs, reflecting interactions between distant proteins,
exert a greater influence on XGPN. The smoothness is typically pre-
defined; however, in XGPN, it is a learnable parameter and is optimized
individually for each protein. Subsequently, XGPN combines the
extracted interactive effect with the classifier parameters shown in Fig. 2
(d), thereby enabling the classification of MCI subtypes.

3.2. Protein biomarker identification

The preprocessed data from plasma samples of 189 participants in
the discovery cohort is utilized to identify differentially expressed pro-
teins (DEPs) by MCI subtypes. The significance of the subtype-wise DEPs
is estimated by the linear regression analysis using “limma” [56]
implemented in an R/Bioconductor (https://www.bioconductor.org/).
Subsequently, Gene Ontology (GO) analysis is conducted on the iden-
tified plasma protein biomarkers to investigate functional annotations
and gain insights into the biological meaning of the biomarkers, by using
Bioinformatics Resources provided by the Database for Annotation,
Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.
gov, version 2021) [57,58].

Table 1
Demographic and clinical characteristics of study participants.

(a) MCI subtype-wise comparison of characteristics for total participants

Characteristics ADCI SVCI

Positive (N = 47) Negative (N = 197) P-value Positive (N = 30) Negative (N = 214) P-value

Age, median (IQR), yr 75 (72–81) 72 (66–76) <0.0001 75 (71–82) 72 (66–77) 0.0019
Female, No. (%) 33 (70.2) 140 (71.1) 0.9083 19 (63.3) 152 (72.0) 0.3318
MMSE, median (IQR) 26 (23–27) 26 (24–27) 0.6164 25 (23–26) 26 (24–27) 0.1144
CDR-SB, median (IQR) 2.0 (1.5–3.0) 1.5 (1.0–2.5) 0.0220 1.5 (1.0–2.5) 1.5 (1.0–2.5) 0.7257
GDS, median (IQR) 3 (2–3) 3 (2–3) 0.3360 3 (2–3) 3 (2–3) 0.8831

(b) Study cohort-wise comparison of characteristics of participants

Characteristics Total participants (N = 244) Discovery cohort (N = 189) Validation cohort (N = 55) P-value

Age, median (IQR), yr 73 (67–77) 72 (67–77) 73 (67–77) 0.9930
Female, No. (%) 173 (70.9) 133 (70.4) 40 (72.7) 0.7361
MMSE, median (IQR) 26 (23–27) 26 (24–27) 25 (23–27) 0.1390
CDR-SB, median (IQR) 1.5 (1.0–2.5) 1.5 (1.0–2.5) 2.0 (1.0–2.5) 0.4722
GDS, median (IQR) 3 (2–3) 3 (2–3) 3 (3–3) 0.1278

Abbreviations: IQR, interquartile range; MMSE, mini-mental status examination; CDR-SB, clinical dementia rating sum of boxes; GDS, global deterioration scale.
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3.3. MCI subtype prediction

3.3.1. Formulated implementation
Let the data matrices for the independent effect and PPI network are

denoted as X ∈ Rp×n and W ∈ Rp×p, respectively, where p and n are the
number of plasma protein biomarkers and study participants, respec-
tively. The interactive effect, denoted as H ∈ Rp×n, is derived by prop-
agating the independent effect to the PPI network. This process has two
objectives for representing the interactive effect: smoothness and steadi-
ness. The smoothness indicates that the features of nodes being more
strongly connected are more similarly represented to each other, while
the steadiness indicates that the propagated feature should not be too
much different from the original feature. In the same manner as graph-
based semi-supervised learning [59], H can be obtained by minimizing
the following quadratic function that implements those two objectives:
∑

i∼j
W(i,j)(H(i) − H(j))2 + ϕ

∑(
H(i) − X(i))2

(1)

where the first and the second terms correspond to the smoothness and
the steadiness, respectively, i ∼ j indicates that nodes V (i) and V (j) are
adjacent in W, and ϕ is the steadiness parameter that trades off two
terms. The steadiness parameter is usually fixed to a user-specified value
so that all proteins have the same steadiness; rather, the proposed
method aims to train the steadiness and further optimize for each pro-
tein individually. To implement this, (1) is transformed as follows,
∑

i∼j
W(i,j)(H(i) − H(j))2 +

∑
ϕ(i)(H(i) − X(i))2

(2)

where the steadiness parameter for each protein is defined as ϕ =
(
ϕ(1),

⋯,ϕ(i),⋯,ϕ(r)) ∈ Rr. Very often, the quadratic problem of (2) is repre-
sented in terms of matrix,

min
H

HTLH+ (H − X)TΦ(H − X) (3)

whereΦ is the matrix of steadiness parameters defined asΦ = Diag(ϕ),
and L is the normalized graph Laplacian defined as L = Ip−

D− 1/2WD− 1/2 with the identity matrix Ip ∈ Rp×p and the diagonal matrix
D = Diag

(
D(i)) from D(i) =

∑
jW

(i,j). The solution of (3) is obtained in
the closed form as below.

H = (Φ + L)− 1ΦX (4)

Subsequently, H in (4) is combined with the classifier vectors, denoted
as ΘAD and ΘSV , and then, the risk probabilities for ADCI and SVCI,
represented as PAD and PSV , are derived by applying the logistic function
as below.

P* =
1

1+ e− Θ*
TH

(

* : AD, SV
)

(5)

3.3.2. Optimization procedure
By denoting the actual diagnosis as Y* ∈ R1×n, which includes binary

elements indicating whether each MCI subtype or not as 1 or 0,
respectively, the parameters are trained to minimize the binary cross-
entropy loss L * as represented below.

L * =
1
n
{(
Y*T log P*

)
+ (1n − Y*)T log(1n − P*)

}

Therefrom, the objective function for XGPN is defined as follows:

argmin
ϕ,ΘAD ,ΘSV

L AD + L SV + δR (6)

where R = ‖ϕ‖22 + ‖ΘAD‖
2
2 + ‖ΘSV‖

2
2 is the L2 regularization term to

penalize the complexity with the positive coefficient δ. The objective
function is optimized by the gradient descent method [60].

Minimization overΘ*: to find gradient w.r.t. the classifier matrixΘ*,
the terms in (6) are firstly derived as below.

∂L *

∂Θ*
=
1
n
H(P* − Y*)T,

∂R
∂Θ*

= 2δΘ*

Then, the gradient of Θ* is obtained as follows.

Fig. 2. Overall framework for this study. (a) shows the overview of study design, and (b) schematically represents XGPN. (c) and (d) indicate the smoothness
parameter for the PPI network and the classifier parameter for MCI subtype diagnosis, respectively.

S. Park et al. Computers in Biology and Medicine 183 (2024) 109303 

5 



∇Θ* =
1
n
H(P* − Y*)T + 2δΘ*

Minimization over ϕ: to find the gradient w.r.t. ϕ, the derivative of
L * w.r.t. H and the derivative of H w.r.t. Φ are firstly obtained as
follows:

∂L *

∂H =
1
n

Θ*(P* − Y*),
∂H
∂Φ

= XT(Φ + L)− 1
{
Ip − (Φ + L)− 1Φ

}
.

Then, the derivative of L w.r.t. Φ is presented as below.

Next, the expression of Φ is transformed by using an r-dimensional row
vector 1p with all elements being 1, as

Φ = Diag(ϕ) = ϕ1p ⊙ Ip,

and therefrom, the derivative of Φ w.r.t. ϕ is indicated as below.

∂Φ
∂ϕ

= Ip1pT (8)

Finally, by combining (7) with (8), the derivative of L w.r.t. ϕ* is ob-
tained as

∂L
∂ϕ

=
∂L
∂Φ

⊙
∂Φ
∂ϕ

=
1
n
{ΘAD(PAD − YAD) + ΘSV(PSV − YSV) } × XT(Φ + L)− 1

{
Ip

− (Φ + L)− 1Φ
}
⊙ Ip1pT,

and then, the gradient w.r.t. ϕ is derived as follows.

4. Results

4.1. Differentially expressed proteins for MCI subtypes

To elucidate the underlying molecular characteristics of the MCI
subtypes, DEP analysis was conducted on the 127 plasma proteins of the
discovery cohort. As shown in Fig. 3(a) and (b), 29 proteins were
identified as plasma protein biomarkers for MCI subtypes, comprising 5
and 24 proteins for ADCI and SVCI, respectively, and the list of proteins
for the two subtypes is provided in the Supplementary Table S3. For
ADCI, NTRK3 and MDGA1 were the upregulated proteins, while LAIR2,
FCRL2, and CCL19 were downregulated. NTRK3 and MDGA1 have been
revealed to be involved in the central nervous system [61] and the
amyloid precursor protein [62], respectively, and thereby, they have
been associated with Alzheimer’s disease and other neuropsychiatric
disorders [63,64]. FCRL2 has previously been implicated in AD patho-
physiology through its essential role in immune pathways [65,66], and
recent studies have identified LAIR2 and CCL19 as AD-related

biomarkers significantly related to cognitive function [67,68]. On the
other hand, there were 21 upregulated proteins for SVCI, the most
remarkable being MMP12, which is an emerging biomarker as an early
indicator of cerebral small vessel disease [69], while BCAN, NCAN, and
CNTN5 were downregulated proteins for SVCI. BCAN and NCAN were
demonstrated as diagnostic biomarkers for VD [70], and CNTN5 was
found to be significantly associated with brain vascular burden [71].
Furthermore, as illustrated in Fig. 3(c), a comparison of the ADCI and
SVCI groups revealed that 5 proteins exhibited higher expression levels
in the ADCI group than in the SVCI group, while 24 proteins demon-

strated lower expression levels in the ADCI group than in the SVCI
group. These findings suggest that the identified plasma protein bio-
markers are consistent with clinical studies on ADCI and SVCI and
include proteins that are already well recognized as significant bio-
markers as well as those that are emerging as novel biomarkers, and
thus, the identified 29 plasma proteins may be useful biomarkers for
classifying MCI subtypes.

4.2. Functional annotations for the identified biomarkers

To characterize the functional annotations of proteins specific to MCI
subtypes, we first performed the PPI network-based clustering on the
identified biomarkers, and as shown in Fig. 4(a), the biomarkers were
grouped into three clusters, where the cluster A, B, and C contain 8, 13,
and 8 proteins, respectively. Subsequently, as illustrated in Fig. 4(b) and
(c), GO analysis was conducted to ascertain the primary functions of
each cluster, and the PPI subnetworks for protein clusters were exam-
ined. The protein cluster A was found to be associated with general
neurological functions, including neurogenesis and nervous system
development, and within the cluster, MDGA1 was the hub node, inter-
acting with all other proteins, followed by BCAN, CNTN5, and NTRK3.

These four proteins showed remarkable significance for ADCI and SVCI
by DEP analysis. For the protein cluster B, immunity-associated func-
tions, including cytokine activity and inflammatory response, were
dominant, with CCL3, CXCL9, and IL17A being the hub nodes of the PPI
subnetwork. These were SVCI-specific upregulated proteins that were
found to be related to the blood-brain barrier and significantly associ-
ated with cerebral small vessel disease [72–74]. The protein cluster C
was identified as playing a role in signal transduction between the other
clusters. As a result, PPI-based clustering of the identified biomarkers
revealed distinct functional annotations for each cluster, and three main
functions of the biomarkers were identified: neurological function,
immunity-associated function, and signal transduction.

4.3. Classification outcomes for MCI subtypes

Fig. 5 depicts the outcomes of MCI subtype classification for the
validation cohort, as predicted by the proposed method. As shown in
Fig. 5(a) and (b), the averages of predicted ADCI and SVCI risks for all 55
participants were 0.4026 and 0.3282, respectively, representing that the
ADCI risk indicated 1.23 times higher than the SVCI risk on average.

∂L
∂Φ

=
∂(L AD + L SV)

∂Φ
=
1
n
{ΘAD(PAD − YAD) + ΘSV(PSV − YSV) } × XT(Φ + L)− 1

{
Ip − (Φ + L)− 1Φ

}
(7)

∇ϕ =
1
n
{ΘAD(PAD − YAD) + ΘSV(PSV − YSV) } × XT(Φ + L)− 1

{
Ip − (Φ + L)− 1Φ

}
⊙ Ip1pT + 2δϕ
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Comparing the outcomes by predicted diagnoses, the averages for the
ADCI-negative and ADCI-positive groups were 0.3525 and 0.6033,
respectively, and the averages for the SVCI-negative and SVCI-positive
groups were 0.3031 and 0.4999, respectively, with P-values of 2.29 ×

10− 6 and 5.21 × 10− 5 for the group-wise differences for ADCI and SVCI,
respectively. In addition, as illustrated in Fig. 5(c) and (d), we validated
the predicted risks for ADCI and SVCI by comparing them to actual
diagnosis and neuroimaging markers. The predicted risks for both MCI
subtypes had an AUROC performance of 0.8806 on average, with an
AUROC for ADCI of 0.9104, which is 1.07 times higher than the AUROC
for SVCI of 0.8507. The predicted risks also showed an average Pearson
correlation of 0.5757 with the neuroimaging markers, with ADCI indi-
cating a correlation of 0.6382 for SUVR, which was 1.24 times higher
than SVCI, which represented a correlation of 0.5132 for PSMD. As a
result, the classification of MCI subtypes by the proposed method not
only accurately matched the binarized actual diagnosis, but also
significantly correlated with neuroimaging-based diagnostic markers
represented as continuous values.

4.4. Enrichment analysis on the predicted outcomes

Based on the predicted outcomes for MCI subtypes, the two-year
changes in cognitive function exhibited by participants in the valida-
tion cohort were analyzed as shown in Fig. 6. At first, the longitudinal
changes in MMSE, CDR-SB, and GDS were compared between the pos-
itive and negative groups for ADCI or SVCI, with 15 and 40 participants
included in the positive and negative groups, respectively. As illustrated
in Fig. 6(a), in the negative group, the averages for MMSE, CDR-SB, and
GDS at baseline were 25.2, 1.8, and 2.8, respectively, and at follow-up

were 25.7, 2.0, and 2.9, respectively, all of which were not signifi-
cantly different with an average P-value of 0.3736. In contrast, the
positive group showed a significant difference with an average P-value
of 0.0211 for the longitudinal changes in the three measures, where the
averages for MMSE, CDR-SB, and GDS at baseline were 24.2, 2.3, and
3.3, respectively, and at follow-up were 21.1, 3.4, and 4.0, respectively,
all of which indicated remarkable changes. In Fig. 6(b), we further
compared the follow-up results for cognitive function between ADCI-
positive and SVCI-positive groups. For the ADCI-positive group, the
averages of MMSE, CDR-SB, and GDS were 20.5, 3.5, and 4.1, respec-
tively, compared to 23.2, 2.7, and 3.2, respectively, for the SVCI-positive
group, where the ADCI-positive group showed an average 23.3 %
decline in cognitive function compared to the SVCI-positive group.
These findings are consistent with clinical studies demonstrating that
the amyloid burden contributes more to cognitive decline than does the
vascular burden [75–77], suggesting that the predicted outcomes by the
proposed method well differentiate ADCI and SVCI.

4.5. Performance comparison with existing methods

The performance of XGPN was evaluated by comparing it to seven
different methods: GCN [32], SGC [38], EGC [39], LGC [39], MixHop
[40], UGCN [41], and MOGCN [42]. The model architectures for the
comparison methods were configured by referencing the best perfor-
mance reported in each paper. Therefrom, the maximum order of
interaction between proteins that reflected in those methods were 2 for
GCN and SGC, 3 for EGC, 4 for MixHop and UGCN, 5 for LGC, and 6 for
MOGCN. The model performance was measured by area under receiving
operating characteristic curve (AUROC), area under precision-recall

Fig. 3. Differentially expressed proteins for MCI subtypes. (a) and (b) represent differentially expressed proteins for ADCI and SVCI, respectively, and (c) compares
the identified biomarkers across MCI subtypes.
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curve (AUPRC), accuracy, and F1-score, and the comparison results are
shown in Fig. 7(a). At first, all methods demonstrated AUROC metrics
ranging from approximately 0.83 to approximately 0.88, with an overall
average of 0.8571. Of the methods evaluated, XGPN yielded the most
precise outcomes, with an AUROC of 0.8806, representing a 3.2 %
improvement over the other seven comparison methods on average,
while GCN indicated the lowest performance with an AUROC of 0.8350.
The comparison methods based on the multiplied convolution filters,
SGC, EGC, and LGC, achieved AUROC performance of 0.9446, 0.8531,
and 0.8575, respectively, with an average of 0.8517. In contrast, the
comparison methods based on the parallelized network architectures,
namely MixHop, UGCN, and MOGCN, demonstrated AUROC perfor-
mance of 0.8590, 0.8613, and 0.8654, respectively, with an average of
0.8619, representing a 1.2 % improved performance compared to the
average of the preceding methods. The proposed method also exhibited

the highest performance on the AUPRC, accuracy, and F1-score metrics,
with an average improvement of 16.7 %, 4.7 %, and 15.3 % over the
comparison methods, respectively, demonstrating that the performance
improvement by XGPN in these metrics is more pronounced in methods
that reflect low-order interactions, as with AUROC. These outcomes
suggest a correlation between the maximum order of interaction and
performance, indicating that XGPN was able to derive superior results
by reflecting global PPIs.

Furthermore, the discriminative power of the interactive effect was
evaluated in six traditional machine learning algorithms: Support Vector
Machines (SVM), Linear Discriminant Analysis (LDA), K-Nearest
Neighbor (KNN), Generalized Linear Model (GLM), Decision Tree Model
(DTM), and Naïve Bayes Classifier (NBC). As illustrated in Fig. 7(b), the
average performance of the six algorithms trained the interactive effect
exhibited an AUROC of 0.7185, which was 12.1 % higher than the

Fig. 4. Functional annotations for the identified biomarkers. (a) depicts the PPI network-based clustering results for the identified biomarkers. (b) provides the gene
ontology-based functional annotation for each protein cluster. (c) indicates the PPI subnetwork for each protein cluster.
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Fig. 5. Classification outcomes for MCI subtypes. (a) and (b) depict the predicted risks by the proposed method for ADCI and SVCI, respectively, and their com-
parison by diagnostic group. (c) and (d) show the validation of the predicted risks for ADCI and SVCI, respectively, by comparing them with the actual diagnosis and
neuroimaging markers.

Fig. 6. Enrichment analysis on the predicted outcomes. We analyzed the changes in cognitive function over two years exhibited by participants in the validation
cohort. (a) shows the comparison between positive and negative groups for ADCI or SVCI, and (b) indicates the comparison of follow-up results between ADCI
positive and SVCI positive groups.
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average AUROC performance of 0.6409 observed when training with the
independent effect. As depicted in Fig. 7(c), by comparing the individual
AUROC improvement by training the interactive effect, where a point in
the scatter plot located above the diagonal line indicates that the model
on the vertical axis performs better, the results demonstrate that the
majority of the dots lie above the diagonal line. Consequently, the
interactive effect by XGPN indicates a significant difference between all
MCI subtype groups, and this discriminative power contributes mean-
ingfully to the diagnosis of MCI subtypes using other algorithms.

4.6. Interpretation of model parameters

The interpretations of the steadiness and classifier parameters in
XGPN are presented in Fig. 8. At first, the results for the steadiness
parameter are displayed in Fig. 8(a). Following the optimization of the
steadiness parameters for the plasma protein biomarkers (all of which
had initial values of 1), 7 of the 29 biomarkers exhibited an increase in
their steadiness, reaching an average of 1.2908, while the remaining 22
biomarkers exhibited a decrease in steadiness, reaching an average of
0.6269, resulting in an overall average of 0.7871. The overall average of
the extracted interactive effect was 0.4759, representing a 5.48 %
decrease compared to the average of the independent effect, which was
0.5035, where the difference between the two effects was statistically
significant (P-value = 0.0338), with 11 and 18 biomarkers exhibiting
increases and decreases, respectively. For each effect, a comparison
between the positive and negative groups for ADCI and SVCI was per-
formed, and the overall average of –log10P-value for the interactive

effect of the identified biomarkers was 0.93, which was 14.8 % higher
than the value of 0.81 for the independent effect. An individual com-
parison of the biomarkers for each MCI subtype revealed that 19 and 20
biomarkers exhibited the more significant group-wise differences with
interactive effects than with the independent effects for ADCI and SVCI,
respectively. These results substantiate the advantage of XGPN that
incorporating the global PPI into the independent effects enhances the
discriminatory power for classifying MCI subtypes.

Next, the classifier parameters for ADCI and SVCI are presented in
Fig. 8(b) and (c), respectively. For the ADCI classification, 12 proteins
were found to exert a positive risk effect, while the remaining 17
demonstrated a negative one. MDGA1 and NTRK3, which were identi-
fied as upregulated proteins for ADCI, exhibited markedly higher risk
effects in comparison to other proteins. In contrast, FCRL2 and LAIR2,
identified as downregulated proteins for ADCI, exhibited notable nega-
tive risk effects. Furthermore, for the classification of SVCI, 13 and 16
proteins exhibited positive and negative risk effects, respectively.
Among the proteins with positive risk effects, DKK4 and IL12A, identi-
fied as upregulated proteins for SVCI, were particularly noteworthy,
whereas CNTN5 and BCAN, identified as downregulated proteins for
SVCI, were the most prominent among the proteins with negative risk
effects.

4.7. Explanation of MCI subtype classification

The interactive effect of XGPN was explained by using the SHapley
Additive exPlanations (SHAP) [78], and the SHAP values for each

Fig. 7. Performance comparison with existing methods. (a) compares the performance of the proposed method with that of existing methods for the classification of
MCI subtypes. (b) and (c) evaluate the discriminative power of the proposed method using six traditional machine learning algorithms.
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Fig. 8. Interpretation of model parameters. (a) shows the steadiness parameter and the comparison of the interactive and independent effects. (b) and (c) presents
the classifier parameters for ADCI and SVCI, respectively.
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biomarker was derived by applying XGBoost model trained on the dis-
covery cohort to the validation cohort. Initially, as illustrated in Fig. 9
(a), the assessment of the importance of each biomarker was conducted
by using absolute SHAP values. For the classification of ADCI, NTRK3
was identified as the most significant protein, followed by CCL3 and
NCAN. NTRK3 has been demonstrated to play a role in the proliferation
and differentiation of neurons during embryonic development and their
subsequent growth and survival in the adult nervous system [79,80],
and thereby, it has been revealed to be associated with Alzheimer’s
disease and other neuropsychiatric disorders [63,81]. CCL3 and NCAN
also have been revealed to be associated with neurodegeneration and to
play a role in AD-related pathology [82,83]. For the classification of
SVCI, IL12A was identified as the most significant protein, followed by
BCAN and EDA2R. IL12A has been demonstrated to significantly
contribute to neuroinflammatory pathways associated with the patho-
genesis of cerebral small vessel disease [84,85]. BCAN and EDA2R also
have been found to be functionally related to the nervous system and
significant biomarkers for vascular dementia [70,86]. Subsequently, we
summed the importance of each protein to ADCI and SVCI and then
selected 13 biomarkers whose values exceeded the overall average as
key proteins for MCI subtype classification.

Furthermore, in order to elucidate the impact of key proteins on the
classification of MCI subtypes, SHAP values were analyzed by catego-
rizing them into subtypes. The outcomes included the individual ex-
pected value and a comparison of SHAP values between groups based on
their positivity and negativity. As shown in Figs. 9(b), 12 participants

indicated positive expected values for ADCI (fADCI+), accounting for
21.8 % of the validation cohort, while the remaining 43 participants
exhibited negative expected values for ADCI (fADCI–). A comparison of
the contribution of key proteins in the fADCI+ and fADCI– groups was
further conducted by calculating the mean of the SHAP values by group
for each biomarker. The results indicated that NTRK3, NCAN, and IL12A
were the proteins with the most significant differences between the two
groups, followed by CCL3, FCRL2, and MDGA1. Furthermore, as illus-
trated in Figs. 9(c), 10 participants indicated positive expected values
for SVCI (fSVCI+), representing 18.2 % of the validation cohort, while the
remaining 45 participants exhibited negative expected values for SVCI
(fSVCI–). Remarkable differences observed between the fSVCI+ and fSVCI–
groups with regard to IL12A, BCAN, EDA2R, JAM2 and NCAN.

5. Conclusion

In this study, we proposed XGPN for MCI subtype classification based
on plasma protein biomarkers. One of the pronouncing features of the
proposed method is to perform classification based on the interactive
effects between proteins. In this process, XGPN propagates the inde-
pendent effects of the identified biomarkers throughout the PPI network,
with both local and global awareness of PPIs, which is individually
optimized for each biomarker. As the other pronouncing feature, the
proposed method provides strong explainability for outcomes. XGPN is
comprised of a single function for extracting interaction effects and a
fully-connected layer for classifying MCI subtypes. This transparent

Fig. 9. Explanation of MCI subtype classification. (a) illustrates the importance of plasma protein biomarkers in classifying MCI subtypes, as determined by
calculating SHAP values. Subsequently, protein biomarkers with higher importance than the overall average were selected as key proteins. To identify the effects of
key proteins on MCI subtype classification, SHAP values were examined by comparing individual expected values into positive and negative groups for ADCI and
SVCI in (b) and (c), respectively.
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architecture facilitates for the straightforward interpretation of the
model parameters and the clear explanation of the predicted outcomes.
Accordingly, XGPN demonstrated the capacity to achieve string
explainability without sacrificing performance. The experimental results
on the BICWALZS dataset for the Korean population demonstrated the
aforementioned features of the proposed method, by indicating that
XGPN outperformed existing methods for MCI subtype classification
while providing a detailed understanding of the impact of the identified
biomarkers. Furthermore, our findings were consistent with those of
previous clinical studies, suggesting that XGPN may serve as a valuable
adjunct in medical decision-making for patients in the predementia
stage.

Here are some remarks on the method we proposed. First, XGPN can
be applied to a variety of domains where interactions between entities
exert a significant influence on the target outcome. XGPN utilized the
PPI network that has already been constructed in the STRING database.
This approach enhances the generalizability of XGPN by ensuring the
graph representation is independent of the training data. Accordingly,
XGPN can be an effective method in other domains, such as chemical
interactions, brain connectivity, and social networks, as there are
various publicly accessible databases that provide information
regarding interactions between entities. Furthermore, the global
awareness of interactions in XGPN will be beneficial for work in those
domains, and as our experimental results demonstrated, the interactive
effect extracted by XGPN can enhance the performance of any classifier.
Second, the utilization of data on a larger number of plasma proteins
enables XGPN to classify MCI subtypes more precisely. In this study, the
identification of plasma biomarkers was limited to proteins included in
the neurology and cytokine panels. This limitation can be alleviated by
using other panels focused on the assessment of inflammation, cell
regulation, and metabolism. We expect that the incorporation of addi-
tional panels of proteomic assays may facilitate further advancements in
the classification of MCI subtypes based on plasma protein biomarkers.
Third, the utility of XGPN could be enhanced by additional validation
with external cohort datasets. The findings presented in this study are
limited to the cohort dataset for the Korean population and were derived
through internal validation only, as there were few cohorts or public
data that included both blood and neuroimaging samples focusing on
neurodegenerative diseases such as MCI and dementia. A further
demonstration of the utility of XGPN will be provided by applying it to
multiple cohort datasets of various ethnicities. This is a high priority for
future research. Fourth, the enhancement of robustness for neuroimage-
based diagnostic markers is a promising avenue for future research.
Although the pipeline for neuroimage processing applied in this study is
sufficiently reliable, it is possible that SUVR and PSMD may be sensitive
to noise present in the PET and DTI scans. Accordingly, it can be
enhanced to provide greater robustness of data, thus complementing
preprocessing steps or regularization techniques, by applying well-
established previous works [87–89]. Lastly, the optimization of pro-
tein interactions can lead to further improvement of XGPN. In this study,
XGPN employed the combined score of PPI, which simply multiplies the
scores of the seven types of interactions. However, as the contribution of
each type to classifying MCI subtypes may vary, the individual optimi-
zation of each PPI type may enhance the technical sophistication of
XGPN. In addition, the incorporation of a greater number of proteins will
result in an expansion of the PPI network applied to XGPN, which will
consequently elevate the computational expense. While this issue was
not a concern in the present study, future research will encompass the
optimization of the large-scale graph.
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C. Malmeström, C. Constantinescu, J. Lycke, F. Piehl, Inflammation-related plasma
and CSF biomarkers for multiple sclerosis, in: Proceedings of the National Academy
of Sciences, vol. 117, 2020, pp. 12952–12960.

[21] M.P. Davies, T. Sato, H. Ashoor, L. Hou, T. Liloglou, R. Yang, J.K. Field, Plasma
protein biomarkers for early prediction of lung cancer, EBioMedicine 93 (2023).

[22] Y. Jiang, X. Zhou, F.C. Ip, P. Chan, Y. Chen, N.C. Lai, K. Cheung, R.M. Lo, E.
P. Tong, B.W. Wong, Large-scale plasma proteomic profiling identifies a high-
performance biomarker panel for Alzheimer’s disease screening and staging,
Alzheimer’s Dementia 18 (2022) 88–102.

[23] F. Gao, X. Lv, L. Dai, Q. Wang, P. Wang, Z. Cheng, Q. Xie, M. Ni, Y. Wu, X. Chai,
A combination model of AD biomarkers revealed by machine learning precisely
predicts Alzheimer’s dementia: China Aging and Neurodegenerative Initiative
(CANDI) study, Alzheimer’s Dementia 19 (3) (2022) 749–760.

[24] C.S. Eke, E. Jammeh, X. Li, C. Carroll, S. Pearson, E. Ifeachor, Early detection of
Alzheimer’s disease with blood plasma proteins using Support vector machines,
IEEE journal of biomedical and health informatics 25 (2020) 218–226.

[25] P. Kivisäkk, C. Magdamo, B.A. Trombetta, A. Noori, Y.k.E. Kuo, L.B. Chibnik, B.
C. Carlyle, A. Serrano-Pozo, C.R. Scherzer, B.T. Hyman, Plasma biomarkers for

prognosis of cognitive decline in patients with mild cognitive impairment, Brain
Communications 4 (2022) fcac155.

[26] S.-I. Chiu, L.-Y. Fan, C.-H. Lin, T.-F. Chen, W.S. Lim, J.-S.R. Jang, M.-J. Chiu,
Machine learning-based classification of subjective cognitive decline, mild
cognitive impairment, and Alzheimer’s dementia using neuroimage and plasma
biomarkers, ACS Chem. Neurosci. 13 (2022) 3263–3270.

[27] X. Wu, L. Chen, X. Wang, Network biomarkers, interaction networks and
dynamical network biomarkers in respiratory diseases, Clin. Transl. Med. 3 (2014)
1–7.

[28] D.-H. Le, Machine learning-based approaches for disease gene prediction, Briefings
in functional genomics 19 (2020) 350–363.

[29] S.K. Ata, M. Wu, Y. Fang, L. Ou-Yang, C.K. Kwoh, X.-L. Li, Recent advances in
network-based methods for disease gene prediction, Briefings Bioinf. 22 (2021)
bbaa303.
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