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Abstract. SVMs tend to take a very long time to train with a large data
set. If “redundant” patterns are identified and deleted in pre-processing,
the training time could be reduced significantly. We propose a k-nearest
neighbors(k-NN) based pattern selection method. The method tries to
select the patterns that are near the decision boundary and that are cor-
rectly labeled. The simulations over synthetic data sets showed promising
results: (1) By converting a non-separable problem to a separable one,
the search for an optimal error tolerance parameter became unnecessary.
(2) SVM training time decreased by two orders of magnitude without
any loss of accuracy. (3) The redundant SVs were substantially reduced.

1 Introduction

The support vector machine(SVM) methodology introduced in [2], is receiving
increasing attention in recent years due to its clear-cut theory and practical per-
formance [3][8]. However, difficulty arises when a large set of training patterns is
given. The time and memory requirements to solve the quadratic programming
increase almost exponentially since the number of training patterns equals to
the number of constraints. Given that “critical” patterns in SVMs are only a
few near the decision boundary, most patterns except them could be considered
of no use or even harmful.

One way to circumvent this difficulty is to select only the critical patterns.
There have been various methods reported in the literature. In [4], the Maha-
lanobis distance was used between class core and each pattern to find the bound-
ary patterns. In [6], they implement RBF classifiers, somewhat like SVMs, by
selecting patterns near the decision boundary. They propose 1-nearest neighbor
method in opposite class after class-wise clustering. But this method presumes
that the training set should be clean. In [7], the clean patterns near the decision
boundary are selected based on the bias and variance of outputs of a network en-
semble. This approach is successful in selecting intended and relevant patterns,
though it requires additional time for training a network ensemble. A pattern
selection approach, specifically designed for SVMs, is proposed in [I]. They con-
duct k-means clustering on the entire training set first. Then only the centroids
are selected for a homogeneous composition(same class label) while all patterns
are selected for a mixed composition. Their approach seems to be successful but
a difficulty still remains: how to determine k, the number of clusters.
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In this paper, we propose a k-nearest neighbors(k-NN) based method. The
idea is to select those patterns with a correct class label near the decision bound-
ary. It is simple and computationally efficient. These are pertinent properties as
a preprocessor.

In section 2, the proposed method is introduced with its motives and algo-
rithm in detail. In section 3, simulations over synthetic data sets are shown. In
section 4, a conclusion as well as a future research work is given.

2 Proposed Algorithm for Pattern Selection

The proposed method tries to select the patterns that are located near the bound-
ary and are correctly labeled. In order to do that, two quantitative measures are
introduced, “proximity” and “correctness”. First, we introduce proximity. A
pattern near the decision boundary tends to have neighbors with mixed class
labels. Thus, the entropy of k-nearest neighbors’ class labels can estimate the
proximity. We select those patterns with “positive” proximity values. Among
them, we want to choose only those with a correct class label. We define cor-
rectness as k-NN’s voting probability to the pattern’s correct class label. We
select only those patterns whose correctness is larger than a threshold, set to %
(J is the number of classes) in our experiments. The effect is as follows: among
those patterns near the boundary, the pattern whose class label is same as its
neighbors’ major class label is regarded as a correct pattern near the decision
boundary. On the other hand, the pattern whose class label disagrees with its
neighbors’ major class label is discarded. Fig. [[lshows the conceptual procedure
of the proposed approach. By proximity, patterns near the decision boundary
are first selected (a—b). Then by correctness only the clean patterns are selected
among them (b—c). Fig. 2 presents the algorithm.

Fig. 1. Conceptual procedure to select the “clean” patterns near the decision boundary.

3 Results

The proposed method was tested on two artificial binary classification problems.
All simulations were performed on a PENTIUM PC using the Gunn’s SVM
MATLAB code [5]. The first problem is a continuous XOR problem. From
the four gaussian distributions, a total of 600 training patterns were generated.
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. Find the k nearest neighbors for pattern x.
. For x, calculate the voting probabilities of k nearest neighbors over J classes.
k .

1 if Fi(x)=j

P; (:E) = Zi:l %

DO M~

L odi=1,...,k j=1,...,J.

where F; (x) is the label of the ith nearest neighbor of @, F; (-) € {1,...,J}.
Fo () is defined as the label of x itself.

3. Calculate x’s proxzimity to the decision boundary.
proximity (x) = ijl P; (x) logm%.
In all calculations, 0log0 is defined to be 0.

4. Calculate x’s correctness.
correctness (x) = P} () where j* = Fp (x).

5. Apply 1 through 4 to all s in the training set.

6. Select the patterns satisfying the following conditions.
proximity (-) > 0 and correctness (-) > <.

Fig. 2. Pattern selection algorithm

Because of an overlap between the distributions, there are about 10% innate
noise patterns, i.e., having an incorrect class label near the decision boundary.

PROBLEM(A) : class(1)={(z1,z2) |N (C,0.5°T) where C = (1,1) or (—1,-1)},
class(2)={(z1,x2) |N (C,0.5°T) where C' = (—1,1)or(1, 1)},
where —3 < z; <3 and —3 <z < 3.

In the second problem, patterns were generated from the two-dimensional uni-
form distribution, and then class labels were determined by a decision function.
In this problem, four different gaussian noises were added on purpose along the
decision boundary, i.e., N(a,b?) where a = point on the decision boundary and
b = gaussian width parameter(0.1, 0.3, 0.8, 1.0). Among 500 training patterns,
20% were incorrectly labeled.

PROBLEM(B) : class(1)={(z1,z2) |2 > sin (3z1 + 0.8)°},
class(2)={(z1, x2) |z2 < sin (3z1 + 0.8)%},
where 0 < z; <1 and —2.5 < x2 < 2.5.

The value of k was empirically set as 6 for PROBLEM(A) and 9 for PROB-
LEM(B). Some other values of k were tried, but such trials did not affect sig-
nificantly to the SVM performance. Fig. Bl shows both problems (above) and
selected patterns (below) after normalization ranged from -1 to 1: Normaliza-
tion is essential for the better performance of finding the nearest neighbors and
of adapting to SVM kernels. The selected patterns shown in white contours are
scattered against original ones. From both plots, the proposed method seems to
extract relevant patterns from redundant ones for SVMs. Only 9.3% patterns
were selected for PROBLEM(A) and 21.8% for PROBLEM(B). The different
reduction ratio is due to the difference in densities near the decision boundary.



472 H. Shin and S. Cho

Fig. 3. Original patterns (above) and selected ones (below): (a) PROB(A), (b) PROB(B).

For each problem, 300 test patterns were generated from a statistically
identical distribution to its training set. Five RBF kernels with different
width parameters(s = 0.25,0.5,1,2,3) and five polynomial kernels with dif-
ferent order parameters(p = 1,2,3,4,5) were adopted. For SVMs trained
with all patterns, various values were tried for the tolerance parameter (C' =
0.1,1,5,10,20,100, 1000, co), since the problem under consideration are non-
separable. Whereas for SVMs trained with the selected subset of patterns, C
was fixed with oo, since the proposed selection method removed “incorrectly
labeled” patterns through converting a non-separable problem into a separable
one.

Average performance was compared in terms of the execution time, the num-
ber of support vectors and the test error in Table [Tl First two columns are ob-

Table 1. SVM Experimental Results

PROB(A) PROB(B)

Avg. ALL ALL SELECTED | ALL ALL SELECTED

(V0)  (C=x)  (C=o) | (vO) (C=x)  (C=o)
CPU-time(sec) | 748.78 2772.97 1.89 430.97  1626.10 5.67

(=0.88+1.01) (=0.66+5.01)

No. of patterns 600 600 56 500 500 109
No. of SVs 297.31 385.21 27.00 300.21 380.70 86.20
Test Err.(%) 14.18 15.33 13.70 17.31 18.27 14.53
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tained when all training patterns were used. The first column is for all C values
we experimented and the second one is for C' = oo. The last column is the av-
erage results for C' = oo when the selected training patterns were used. The
training time with only selected patterns were just 1.89(sec) and 5.67(sec) even
including the time taken to execute the proposed selection procedure. For PROB-
LEM(A), the pattern selection took 0.88(sec) and training SVMs took 1.01(sec).
For PROBLEM(B), 0.66(sec) and 5.01(sec) respectively. In the worst case, when
one doesn’t know the data noise level(it happens almost always), one might set
the tolerance parameter C' = oo like in second column. In that case, one should
endure 2772.97(sec) and 1626.10(sec) to take the results on such simple artificial
problems. Second, in our method, the uppermost number of SVs are bounded
by the number of the selected patterns. If the generalization performance is not
improved, there is no reason to project input patterns onto too high dimensional
feature space even though all calculations are achieved implicitly. Finally, for ac-
curacy, SVMs with selected patterns do not degrade their original performances
in both problems. Fig. M shows the decision boundaries and margins of SVMs
both with all patterns and with the selected patterns. Kernel parameter was

(b)

Fig. 4. Decision boundary, margin and SVs, (a) with all patterns and (b) with the
selected patterns: the upper figures are for PROB(A) with polynomial kernel(p = 3)
and the lower figures are PROB(B) with RBF kernel(s = 1).

fixed at the value which was best performed with all patterns for comparison
purpose(for the selected patterns, it is not the best one). From the figures, it is
easily seen that the decision boundaries formed using the selected patterns are
almost same as those with all patterns. Margins in (b) figures are much narrower
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than those of original margins in (a) since noise pattern elimination enabled us
to set C' = oo. And also the number of support vectors are remarkably smaller
in (b) figures.

4 Conclusion

We proposed a pattern selection method as a filtering procedure for SVM train-
ing. By utilizing knearest neighbor method, the patterns with a correct class
label near the decision boundary were selected.

The proposed method produced encouraging results as follows. First, the
search for an optimal tolerance parameter C' is not necessary anymore. Second,
SVM execution time decreased two orders of magnitude without any loss of
accuracy. Third, by reducing the redundant SVs, the projection onto too high
dimensional feature space can be avoided. Our method can be extended to multi-
classification problems without any correction.

In this paper, we just demonstrated the proposed method over synthetic data
but it is currently applied to over real world problems. Finally, we found that
the misclassification error rate of /NN with a large k seemed to be similar to
the noise level which we imposed on the data on purpose. Hence, this approach
could be utilized to predict the data noise level ahead of time.
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