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Abstract 
Neurodegenerative diseases involve progressive neuronal dysfunction, requiring the identification of specific pathological features for 
accurate diagnosis. While cerebrospinal fluid analysis and neuroimaging are commonly used, their invasive nature and high costs limit 
clinical applicability. Recently advances in plasma proteomics offer a less invasive and cost-effective alternative, further enhanced by 
machine learning (ML). However, most ML-based studies overlook synergetic effects from protein–protein interactions (PPIs), which play 
a key role in disease mechanisms. Although graph convolutional network and its extensions can utilize PPIs, they rely on locality-based 
feature aggregation, overlooking essential components and emphasizing noisy interactions. Moreover, expanding those methods to 
cover broader PPIs results in complex model architectures that reduce explainability, which is crucial in medical ML models for clinical 
decision-making. To address these challenges, we propose Protein–Protein Interaction-based eXplainable Graph Propagational Network 
(PPIxGPN), a novel ML model designed for plasma proteomic profiling of neurodegenerative biomarkers. PPIxGPN captures synergetic 
effects between proteins by integrating PPIs with independent effects of proteins, leveraging globality-based feature aggregation to 
represent comprehensive PPI properties. This process is implemented using a single graph propagational layer, enabling PPIxGPN to be
configured by shallow architecture, thereby PPIxGPN ensures high model explainability, enhancing clinical applicability by providing
interpretable outputs. Experimental validation on the UK Biobank dataset demonstrated the superior performance of PPIxGPN in
neurodegenerative risk prediction, outperforming comparison methods. Furthermore, the explainability of PPIxGPN facilitated detailed
analyses of the discriminative significance of synergistic effects, the predictive importance of proteins, and the longitudinal changes
in biomarker profiles, highlighting its clinical relevance.

Keywords: neurodegenerative diseases; blood-based biomarkers; protein–protein interaction; graph neural network; explainable
machine learning

Introduction 
Neurodegenerative diseases are characterized by the progressive 
dysfunction and loss of neurons in the brain and nervous system. 
Accura te diagnosis of these conditions depends on identifying
specific pathological features [1]. For example, dementia, the 
most prevalent neurodegenerative disease, is categorized into 
several subtypes based on distinct neuropathological hallmarks. 

Alzheimer’s disease (AD) is associated with β-amyloid (Aβ)  depo-
sition and tau pathology, and Parkinson’s disease (PD) and Lewy
body dementia are related to α-synuclein pathology [2]. Tradition-
ally, the primary methods for identifying these neuropathological 
features have included cerebrospinal fluid (CSF) biomarkers 
and neuroimaging. CSF biomarkers, such as the Aβ42/Aβ40 ratio 
(Aβ42/40) and phosphorylated tau (pTau), are employed to evaluate
nervous system conditions, diagnose neurological disorders,
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and monitor disease progression [3]. However, the invasive 
nature of CSF collection poses risks of severe complications. 
Neuroimaging provides objective evidence of Aβ deposition or 
tau tracer detection via positron emission tomogra phy and
assesses hippocampal or medial temporal neurodegeneration
through magnetic resonance imaging [4]. Despite their utility, 
these methods are associated with high costs. As a result, in 
recent decades, substantial research efforts have been directed 
toward deve loping diagnostic biomarkers to better differentiate
the pathophysiological features of neurodegenerative diseases [5]. 

Recently, the advent of plasma biomarkers has provided a 
less invasive and more cost-effective alternative for identifying 
diverse neuropathological features through the assessment of
multiple biomarkers from a single sample [6]. There are four key 
plasma biomarkers associated with neurodegeneration: Aβ42/40, 
pTau, neurofilament light (NfL), and glial fibrillary acidic protein 
(GFAP). Aβ42/40 is widel y used and strongly related to cerebral
amyloid pathology and neuronal damage [7]. The blood levels of 
pTau significantly correlate with Aβ accum ulation and clinical
severity in AD [8]. NfL serves as a promising biomarker of neu-
rodegeneration and neuroaxonal dama ge, reflecting active brain
pathology [9]. GFAP is found to be associated with neuroinflam-
mation and plays a key role in assessing various aspects of the
astrocytic response in neurological disorders [10]. Accordingly, 
plasma proteomic profiling of these biomarkers offers a compre-
hensive understanding of neuropathological features , enabling
precise diagnoses of neurodegenerative diseases.

Furthermore, the application of machine learning (ML) has sig-
nificantly advanced plasma proteomic profiling of neurodegener-
ative biomark ers with more sophisticated analytical approaches
[11]. However, many existing studies primarily focus on the 
independent effects of proteins, relying solely on expression data
while often overlooking their interactions [12]. This oversight 
fails to capture the collective contributions of multiple proteins 
with small effect sizes, whic h can influence disease progression
through their interactions [13]. Synergetic effects arising from 
protein–protein interactions (PPIs) play a crucial role in disease 
mechanisms, emphasizing the importance of PPI-based assess-
ment of disease risk for understanding molecular pathogenesis
[14]. Neurodegenerative diseases involve complex interactions 
between various molecular pathways, further underscoring
the critical role of PPIs [15]. Additionally, advancements in PPI 
databases have broadened their coverage to nearly the entire 
proteome, facilitating the adoption of computational approaches
based on PPI networks [16]. Consequently, the significance of 
ML-based plasma proteomic profiling of neurodegenerative 
biomarkers, enhanced by lever aging PPIs, is becoming increasingly
evident.

One well-established ML approach for modeling the PPI 
network is graph neural network (GNN), particularl y graph
convolutional network (GCN) [17], where proteins are represented 
as nodes, PPIs as edges, and protein expression values as 
features. GCN leverages graph convolutional layers to aggregate 
feature information from one-hop neighboring nodes, enabling 
it to capture local pr operties of PPIs. However, it struggles to
account for global properties of PPIs and multi-hop relationships
between proteins [18]. To overcome this limitation, GCN has 
been adapted for multi-hop feature aggregation. Approac hes like
simple graph convolution (SGC) [19] utilize the higher-order graph 
convolutional filter to aggregate features from distant nodes. 
More advanced models, including Exponential Graph Convolution
(EGC) and Linear Graph Convolution (LGC) [20], enhance SGC by 
incorporating more sophisticated graph Laplacian computations. 

Additionally, methods with parallelized gra ph convolutional
architectures, such as MixHop [21] and its derivatives, Unive rsal
GCN (UGCN) [22] and Mixed-order GCN (MOGCN) [23], improve 
their ability to model a wider range of PPIs by incor porating multi-
hop feature aggregation.

While the extended versions of GCN can account for a some-
what broader range of PPIs, they nevertheless fail to encompass 
the full range of properties present in the PPI network, where the 
locality-based feature representation of PPIs gives rise to a couple 
of issues. Firstly, the structural properties of the PPI network are 
overlooked. The PPI network is intricate and hierarchical, compris-
ing various subnetworks. By focusing exclusively on interactions
between nearby proteins, important features and modules within
the entire PPI network may be overlooked [24, 25]. Secondly, the 
noisy interactions in the PPI network are emphasized. Since the 
PPI network incorporates data from d iverse experimental sources,
it is susceptible to some noisy interactions [26, 27]. The locality-
based representation of PPIs may potentially exaggerate these 
noisy interactions. Accordingly, GCN-based models necessitate 
globality-based feature aggregation to address these issues and
reflect the comprehensive properties of the PPI network.

Although the re-extension of GCN-based models can partially 
mitigate the aforementioned issues, it remains a provisional solu-
tion that fails to capture the comprehensive properties of the PPI 
network. Moreover, this approac h necessitates a more complex
model architecture, which compromises the explainability of the
model and its outcomes [28]. Explainability is crucial for under-
standing the predictive processes of ML models, particularly in the 
medical field, where decisions directly impact on patient care [29]. 
Explainability improves the transparency of ML models, enabling 
healthcare professionals to trust and effectively integrate them
into clinical decision-making [30]. Furthermore, it provides deeper 
insights into biological processes and disease mechanisms, aiding 
in understanding disease pathophysiology and advancing preci-
sion medicine [31, 32]. Therefore, to ensure high explainability, the 
globality-based feature aggregation, which comprehensively cap-
tures the properties of the PPI netw ork, should be implemented
using shallow model architecture.

In this study, we propose a novel ML method, called Protein– 
Protein Interaction-based eXplainable Graph Propagational Network 
(PPIxGPN), for plasma proteomic profiling of neurodegenerative 
biomarkers, including Aβ, GFAP, NfL, and pTau. The proposed 
method leverages the PPI network by utilizing a GNN-based 
architecture, enabling it to capture synergetic effects between 
proteins and apply them to predict risks for the biomarkers. This 
process is implemented using a single graph propagational layer, 
a key component of the proposed method, allowing PPIxGPN 
to be configured by shallow architecture with only two layers,
along with a fully connected layer for risk prediction. Accordingly,
PPIxGPN reflects the comprehensive properties of the PPI network
through globality-based feature aggregation while preserving
an intuitive architecture that enhances the explainability of
both the model and its outcomes. As illustrated in Fig. 1,  our  
study framework consists of target protein identification and 
neurodegenerative risk prediction. The proposed method first 
identifies differentially expressed proteins (DEPs) associated 
with the biomarkers. Among these DEPs, those common to 
all biomarkers are identified as target proteins. Subsequently, 
PPIxGPN integrates the independent effects of target proteins with 
the PPI network to predict individual risks for four biomarkers.
PPIxGPN comprises two processes: graph propagation and
risk estimation, with model parameters defined for each. The
parameter for graph propagation controls the propagation
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Figure 1. Overview of the proposed method. Our study framework comprises target protein identification and neurodegenerative risk prediction. (a) The 
proposed method first identifies DEPs associated with biomarkers, selecting those common across all biomarkers as target proteins. (b) PPIxGPN then 
integrates the independent effects of these proteins with the PPI network to predict individual risks for four biomarkers, consisting of graph propagation 
and risk estimation, each implemented by specific model parameters. The graph propagation parameter regulates the propagation intensity within 
the PPI network for each protein, while the risk estimation parameter fine-tunes protein effect sizes for each biomarker, ensuring a distinct separation
between positive and negative diagnosis groups.

intensity within the PPI network for each protein, while the 
parameter for risk estimation optimizes the effect size of target 
proteins for each biomarker, ensuring a clear distinction between 
positive and negative diagnosis groups. The main contributions
of the proposed method are summarized as follows:

• We introduce a novel method, called PPIxGPN, for plasma 
proteomic profiling of neurodegenerative biomarkers, which 
predict the individual risks for Aβ, GFAP, NfL, and pTau by
identifying target proteins that are significantly expressed
across all four biomarkers.

• PPIxGPN integrates the PPI network with the independent 
effects of target proteins for the biomarkers, effectively cap-
turing synergetic effects among proteins, and by incorporat-
ing globality-based feature aggregation, PPIxGPN reflects the
comprehensive properties of the PPI network.

• PPIxGPN is designed with shallow architecture including 
only two layers, ensuring high model explainability, thereby 
enhances clinical applicability by providing interpretable out-
puts that not only improve neurodegenerative risk p rediction
but also help understand the biological significance of PPIs
and their contributions to disease progression.

Protein-protein interaction-based 
eXplainable graph pr opagational network
Overall pr ocess
Given that d and n are the numbers of target proteins and study 
participants, respectively, the data matrix for the independent
effects, denoted by X ∈ Rd× n, consists of the preprocessed expres-
sion data for the target proteins. PPIxGPN first extracts the syner-
getic effects of target proteins, denoted as Z ∈ Rd ×n, by propagating 
the independent effects onto the PPI network W ∈ Rd ×d. In this 
process, the propagation parameter φ ∈ R d is applied to the 
proteins for individually controlling the intensity of propagation. 
Subsequently, the synergetic effect is applied to the estimation
parameter, denoted as �∗ ∈ R d (∗:  Aβ, GFAP, NfL, pTau), and 
the individual risks for neurodegenerative biomarkers, denoted 

Table 1. Summarized description for notation of PPIxGPN. 

Notation Description 

n Number of stud y participants 
d Number of target proteins 
X ∈ Rd×n Independent effect of tar get pr oteins
Z ∈ Rd×n Synergetic effect of tar get pr oteins
W ∈ Rd×d PPI network for tar get proteins
φ ∈ Rd Propagation parameter set of PPIxGPN
�∗ ∈ Rd Estimation parameter set of PPIxGPN
P∗ ∈ Rn Predicted risk set for biomarkers
Y∗ ∈ Rn Real diagnosis label set for biomarkers
∗ Aβ,  GFAP,  NfL,  p  Tau

as P∗ ∈ R n, are derived. The proposed method encompasses two-
layered model architecture, including two parameter sets, φ and
�∗, which are optimized by comparing the predicted risk P∗ with 
the real diagnosis, denoted as Y∗ ∈ R n. Notations for PPIxGPN ar e
summarized in Table 1. 

Model implementa tion
PPIxGPN consists of two processes: graph propagation and risk esti-
mation, where the former extracts the synergetic effect, while the 
latter derives the individual risks for neurodegenerative biomark-
ers. The graph propagation process transforms the independent 
effect into the synergetic effect that accounts for PPIs. Here, the 
“independent effect” refers to the expression value of each pro-
tein, capturing only its own expression level without considering
PPIs. To incorporate PPIs, the proposed method represents the
synergetic effect via the following objective function:

∑
i∼j 

W(i,j)
(
Z(i) − Z(j)

)2 +
∑

φ(i)
(
Z(i) − X(i )

)2
. (1)

In Equation (1), the first term enhances “smoothness,” ensur-
ing that adjacent proteins have similar representation values. 
The second term enhances “steadiness,” preventing the newly
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generated synergetic effect (Z) from deviating excessively from 
the original independent effect (X). The propagation p arameter
φ is defined for each protein and can be viewed as a parameter 
that determines how much interaction information is exchanged 
with neighboring nodes—i.e. how extensively it propagates. The
objective function in Equation (1) can be expressed in matrix form 
as shown below:

min 
Z 

ZTLZ + (Z − X)
T� (Z − X) (2)

where � is the diagonal matrix for φ, and L is the normalized graph 
Laplacian for W, which is defined as L = Id − D−1/2WD− 1/2 with 
the diagonal matrix D = Diag

(
D(i )) from D(i) = ∑

kW(i,k ) and the 
identity matrix Id ∈ Rd ×d. The solution of Equation (2) is obtained 
in the closed form as below:

Z = (� + L)
−1�X (3)

As a result, the graph propagation process simultaneously 
propagates protein expression (the independent effect) across the 
entire PPI network, producing a new representation (the syner-
getic effect) that accounts for relationships with adjacent nodes. 
Because this global (all-hop) propagation is computed in closed
form within a single layer, it can capture the complete proper-
ties of the PPI network in one pass—without stacking multiple
layers.

Subsequently, in the risk estimation process, Z is combined 
with the estimation parameter �∗, and then, the individual risks 
for neurodegenerative biomarkers are derived by applying the
logistic function as follows:

P∗ = 1/
(
1 + e−�∗T Z

)
(4)

Parameter optimiza tion
PPIxGPN includes two parameter sets: φ for the graph propagation
and �∗ for the risk estimation. These parameters are trained to 
minimize the binary cross-entropy loss L∗ as represented belo w:

L∗ = 
1 
n

{(
Y∗T log P∗

)
+ (1n − Y∗)T log (1n − P∗)

}
(5)

Accordingly, the objective function for PPIxGPN is defined as
follows:

argmin 
φ, �∗

∑
L∗ + δR (6)

where R = ‖φ‖2 
2 + ∑ ‖�∗‖2 

2 stands for regularizing the complexity 
of parameters, and δ is the hyper-parameter for R. The objective 
function in Equation (6) is optimized by using the gradient descent 
method [33]. 

Minimization over �∗: to find gradient w.r.t. the estimation
parameter �∗, the derivatives of two terms in Equation (6) w.r.t.
�∗ are firstly obtained as below:

∂L∗ 

∂�∗ 
= 

1 
n 

Z(P∗ − Y∗)T , 
∂R 
∂�∗

= 2δ�∗

Then, the gradient w.r.t. �∗ is derived as follo ws:

∇�∗ = 
1 
n 

Z(P∗ − Y∗)T + 2 δ�∗ (7)

Minimization ov er φ: to find the gradient w.r.t., the propagation
parameter φ, the derivativ e of L w.r.t. Z is firstly obtained as 
follows:

∂L 
∂Z 

=
∑ ∂L∗ 

∂Z 
= 

1 
n

∑
�∗ ( P∗ − Y∗) (8)

Next, the derivative of Z w.r.t. � is obtained as follo ws:

∂Z 
∂�

= XT (� + L)
−1

{
Ip − (� + L)

− 1�
}

(9)

By combining Equation (8) with Equation (9), ∂L/∂� is indicated 
as belo w:

∂L 
∂�

= 
1 
n

{∑
�∗ (P∗ − Y∗)

}
XT (� + L)

−1
{
Ip − (� + L) −1�

}
(10)

Subsequently, the expression of � is transformed to � = 
Diag (φ) = φ1d � Id by using an d-dimensional row vector 1d,  and  
then, the derivative of � w.r.t. φ is indicated as belo w:

∂�

∂φ 
= Id1d 

T (11)

By combining Equation (10) with Equation (11), the derivativ e
of L w.r.t. φ can be obtained as 

∂L 
∂φ 

= 
1 
n

{∑
�∗ (P∗ − Y∗)

}
XT (� + L)

−1
{
Id − (� + L)

−1�
}

� Id1d 
T , 

and finally, the g radient w.r.t. φ is derived as follo ws:

∇φ = 
1 
n

{∑
�∗ (P∗ − Y∗)

}
XT (� + L)

−1
{
Id − (� + L)

−1�
}

�Id1d 
T + 2δφ (12)

The overall procedure for PPIxGPN is summarized in
Algorithm 1. 

Algorithm 1. PPIxGPN. 

Input: 
Independent effects of target proteins X ∈ Rd ×n

PPI network for target proteins W ∈ Rd× d

Real diagnosis for biomarkers Y∗ ∈ R n (∗:  Aβ, GFAP, NfL, pTau) 
Output: Individual risks for biomarkers P∗ ∈ R n

Initialize parameters: φ ∈ R d and �∗ ∈ R d

While (stopping criterion is not satisfied) 
Feedforward 

Graph propagation: synergetic effect Z by (3) 
Risk estimation: individual risks P∗ by (4) 

Loss functions 
Binary cross-entropy loss L∗ by (5) 
Regularization loss R by (6) 

Backpropagation 
Propagation parameter φ := φ − η ∇φ by (7) 
Estimation parameter �∗ := �∗ − η∇�∗ by (12) 

End while 
Return Individual risks for biomarkers P∗
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Table 2. Demographic characteristics of the stud y participants.

Characteristics Total participants 
(N = 906)

Followed-up participants (N = 783)

Baseline Follow-up P-valuea 

Female, No. (%) 491 (54.2) 422 (53.9) – 
Education, med. (IQR) 7 (3–17) 7 (3–17) – 
Age, med. (IQR), year 58 (54–64) 58 (53–64) 61 (57–67) <.0001 
Aβ-positivity, No. (%) 192 (21.2) 162 (20.7) 265 (33.8) <.0001 
GFAP-positivity, No. (%) 175 (19.3) 155 (19.8) 205 (26.2) .0027 
NfL-positivity, No. (%) 227 (25.1) 189 (24.1) 236 (30.1) .0075 
pTau-positivity, No. (%) 212 (23.4) 182 (23.2) 163 (20.8) .2470 

aP-values were calculated by comparing the baseline and follow-up measurements for eac h characteristic among the followed-up participants.

Results 
Data description 
Study participants 
The dataset used in this study was sourced from the UK Biobank 
(UKB), which recruited over 500,000 participants aged 39–70 
between 2006 and 2010, with long-term monitoring of their health
outcomes (additional details can be at: https://biobank.ndph.ox. 
ac.uk/showcase/). From the UKB participants, 906 individuals 
with complete data on four neurodegenerative biomarkers 
(Aβ42/40, GFAP, NfL, and pTau181) were selected for the analytical 
cohort. Given that higher levels of GFAP, NfL, and pTau indicate 
increased risk, while lower levels of Aβ42/40 signify greater risk, 
the reciprocal of Aβ42/40 (Aβ40/42) was used in this study to
maintain consistency in predictions. For each participant, the
positivity and negativity for the biomarkers were determined
using the “cutoff” [34] implemented in R (https://github.com/ 
choisy/cutoff). Of the participants, 783 had follow-up data on the 
biomarkers, with an average follow-up duration of 3.25 years, 
enabling the assessment of longitudinal c hanges. The demo-
graphic characteristics of the study participants are presented in
Table 2. 

Plasma samples 
The plasma samples of participants were profiled by the Olink
Platform [35], where 1463 proteins were totally assayed (further 
details can be found at: https://olink.com/). For the initial data 
for protein expression, proteins with a missing frequency >5% 
were excluded, and missing values were estimated using the k-
nearest neighbor method. Subsequently, protein expr ession levels
were standardized through Z-score normalization and then scaled
using the logistic function.

Proteomic assa ys
Differentially expressed pr oteins
Differential expression analysis (DEA) was conducted to identify 
proteins associated with neurodegenerative biomarkers among 
the total assayed proteins. The expression levels of each protein 
were compared between the case and control groups for the 
biomarkers, and the statistical significance of those differences
is subsequently analyzed. To carry out this analysis, the “limma”
R/Bioconductor package [36] was utilized. Of the 1412 proteins 
that passed quality control, DEA identified 237, 344, 411, and 440 
DEPs for Aβ, GFAP, NfL, and pTau, respectively, using a P-value
threshold of .05 (Fig. 2a). A total of 670 DEPs were associated 
with neurodegenerative biomarkers, with 113 proteins shared 
across all biomarkers. These shared DEPs were selected as the 
target proteins for this study. Among the target proteins, 104 

were consistently upregulated across all biomarkers, with an 
average –log10 P-value of 3.14. NEFL showed the highest –log10 P-
value (9.94), followed by WFDC2 (7.63) and GDF15 (6.89). Clinical
studies have established significant associations between the
plasma levels of these proteins and the pathogenesis of neurode-
generative diseases, including AD and PD [11, 37, 38]. Detailed 
results for the target proteins are provided in Supplementary 
Table S1. 

Functional enrichment analysis
Subsequently, the functional enrichment analysis was performed 
on the target proteins for neurodegener ative biomarkers by
employing the “Enrichr” [39]  (https://maayanlab.cloud/Enrichr/). 
This analysis identified significant terms for the target proteins 
across five categories of functional annotations: three gene 
ontology (GO) domains (biological process, cellular component,
and molecular function) and two pathway databases (KEGG
[40] and Reactome [41]), with a thresholding Q -value of .05.
Figure 2b shows the top five terms with high protein frequencies 
for each category. The findings revealed that the proteins 
were significantly associated with cytokines, the immune 
system, and signal transduction, highlighting the critical role 
of cytokines in influencing the central nervous system through
various mechanisms, as well as the neuroinflammation they
mediate in the development of neurodegenerative diseases
[42, 43]. 

Protein–protein interaction networ k construction
The PPI network for the 113 target proteins was constructed 
based on the combined scor es of PPIs obtained from the
STRING database [44] (version 12.0, https://string-db.org/). In 
the constructed network, PPIs with a combined score >0.4 were 
included, and the edge weights between proteins were first 
standardized through Z-score normalization of the combined 
score, then scaled to values between 0 and 1 using a logistic 
function. As a result, the constructed PPI network included
234 interactions among 93 of the 113 proteins, each of which
was connected by at least one edge, representing a network
density of 5.47% (Supplementary Fig. S1). As shown in Fig. 3a, 
each protein was connected to an average of 5.03 other proteins, 
with TNFRSF1A having the highest node degree of 19, and the 
average weight of the 234 edges included in the network was 0.486. 
Furthermore, we identified PPIs corresponding to functional,
physical, and regulatory interactions among the entire set of
PPIs (Fig. 3b). Specifically, 20 PPIs were verified as functional 
interactions through the Reactome database (version 91) [41], 
14 were identified as physical interactions using IntAct (release
249) [45] and BioGRID (release 4.4.240) [46] databases, and 47
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Figure 2. Proteomic assays of target proteins for neurodegenerative biomarkers. (a) Shows the differentially expressed proteins for neurodegenerative 
biomarkers. (b) Presents the results for the functional enrichment analysis for 113 proteins that were found to be commonly signif icant to all biomarkers.

Figure 3. Structural properties and interaction types in the constructed PPI network. (a) Shows the structural properties of the PPI network for the 113 
tar get proteins and (b) presents functional, physical, and regulatory inter actions in the constructed PPI network.

were confirmed as regulatory interactions based on co-expression 
evidence in the STRING database.

Performance evalua tion
Experimental settings 
We conducted three types of experiments to evaluate the per-
formance of the proposed method. First, we compared its per-
formance with that of the baseline model, which trained the
independent effect, and seven GNN-based models—GCN [17], SGC 
[19], EGC [20], LGC [20], MixHop [21], UGCN [22], and MOGCN 
[23]—applicable to the PPI network. The maximum order of PPIs 
reflected in those models were 2 for GCN, 3 for SGC, 4 for EGC 
and MixHop, 5 for LGC and UGCN, and 6 for MOGCN, where a 
model with a maximum PPI order of K considers interactions up
to the K-hop neighboring proteins in the PPI network. All models
were trained using the ADAM optimizer [47] with a learning 
rate of 0.001. The performance was measured by the area under 
the receiving operating characteristic curve (AUROC), area under 
precision-recall curve (AUPRC), a ccuracy, and F1-score, with 100
iterations of five-fold cross-validation.

Second, we validated the performance improvement obtained 
by incorporating the synergetic effects derived from PPIxGPN 
into various ML models that had previously been used to learn 
the independent effects of proteins. In the blood protein-based 
diagnostic models, Logistic Regression Classifier, Linear SVM,
Kernel SVM, Random Forest Classifier, AdaBoost, and XGBoost
were each applied in [48–53], respectively. In addition to these 
five models, we employed seven more ML models—linear dis-
criminant analysis, Quadratic Discriminant Analysis, Polynomial 
Support Vector Machines, K-Nearest Neighbors , Naïve Bayes
Classifier, Decision Tree Classifier, Generalized Linear Model—in
our experiments.

Last, we conducted an empirical analysis of the PPI network 
focusing on edge density and interaction types. At first, we exam-
ined how varying the edge density of the PPI network affects 
performance in predicting neurodegenerative risk. Specifically, 
from the constructed network, we randomly selected edges cor-
responding to 20%, 40%, 60%, and 80% of all PPIs to build respec-
tive PPI networks and applied our proposed method. For each
proportion, we constructed 100 random networks and performed
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Figure 4. Performance comparison for predicting neurodegenerative risks. The performance of PPIxGPN was evaluated against the baseline model and 
seven GNN-based methods using AUROC, AUPRC, accuracy, and F1-score. (a) Compares the overall performance metric—Calculated as the average of 
AUROC, AUPRC, accuracy, and F1-score—and highlights the performance improvements achieved by PPIxGPN. (b) Presents the individual comparisons 
for each performance metric, and (c) shows the averages of o verall performance metrics for each neurodegenerative biomarker.

repeated experiments. The results were compared both to the out-
come of learning only the independent effect and to the outcome 
of our proposed method when applying all PPIs in the constructed 
network. Next, we highlighted functional, physical, and regulatory 
interactions in the existing PPI network and constructed new 
networks accordingly, then applied PPIxGPN to investigate any 
changes in performance for neurodegenerative risk prediction. For 
each interaction type, we set the weights of the corresponding
edges to 1, constructing three new PPI networks in total. We
then applied our proposed method to these networks in the same
manner as before.

Comparison r esults
The performance comparison results are illustrated in Fig. 4.  By  
comparing an overall performance metric that averages AUROC, 
AUPRC, accuracy, and F1-score, PPIxGPN achieved the highest
score of 0.599 (Fig. 4a), while that of the comparison methods 
ranged from 0.502 to 0.571, with PPIxGPN outperforming them 
by 9.6% on average. Among the comparison methods, MOGCN, 
with a maximum PPI order of 6, demonstrated the highest average 
performance of 0.571, while GCN, with a maximum PPI order 
of 2, exhibited the lowest average performance of 0.523. These 
findings suggest a positive correlation between the maximum 
PPI order and performance, with the proposed method achieving
optimal results by incorporating global properties of the PPI net-
work. Furthermore, an analysis of individual performance metrics
revealed that the proposed method consistently outperformed the
comparison methods, achieving superior results across all metrics
(Fig. 4b). It was also observed that higher maximum PPI orders 
contributed to improved performance in individual metrics.

In addition, Fig. 4c shows the performance comparison for 
each neurodegenerative biomarker. The averages of overall per-
formance metrics across all methods for Aβ, GFAP, NfL, and pTau 
were 0.428, 0.557, 0.639, and 0.590, respectively. The proposed 
method achieved the most optimal results for each biomarker, 
surpassing the comparison methods by an average of 9.7%, 13.8%, 
9.6%, and 5.7% for Aβ, GFAP, NfL, and pTau, respectively. Among 
the biomarkers, NfL exhibited the highest performance, while Aβ 
demonstrated the lowest performance, with an average of 49.1% 
lower than the others. These re sults align with the understanding
that plasma Aβ biomarkers have a lower signal-to-noise ratio and

weaker associations with diagnostic outcomes, where clinical
studies have highlighted the inherent complexity and variability
of Aβ, influenced by subtle level variations and numerous
confounding factors, contributing to diagnostic challenges in
dementia [54–56]. Detailed results of the performance comparison 
are provided in Supplementary Table S2. 

Prediction enhancements 
Figure 5 presents a comparison of neurodegenerative risk predic-
tion performance, based on training the independent and syner-
gistic effects, across 13 different ML models. Models trained on 
the synergetic effect achieved an average AUROC of 0.729, rep-
resenting an 11.6% improvement over the 0.653 average AUROC
obtained from the independent effect. This difference was sta-
tistically significant, with a P-value of 6.72 × 10−43. These results 
demonstrate that the synergetic effect captured by PPIxGPN offers 
greater discriminative power in biomarker identification com-
pared to the independent effect. Furthermore, our approach per-
forms effectively even w ith relatively simple ML algorithms, sug-
gesting its generalizability for broader applications.

In addition, prediction outcomes were further enhanced by 
incorporating demographic information, including participants’ 
age, sex, and education scores, into PPIxGPN. As shown in Fig. 6, 
the enhanced PPIxGPN achieved an AUROC performance of 0.780, 
a 4.3% improvement over the original result, whic h was sta-
tistically significant with a P-value of 4.40 × 10−163.  The  most  
notable improvement was observed in pTau prediction, with a 
6.0% increase, followed by a 4.8% improvement in NfL predic-
tion. Apart from Aβ prediction, which showed the smallest per-
formance gain, the AUROC improvements for the other three 
biomarkers were statistically significant. These findings indicate 
that PPIxGPN not only effectively integrates protein expression 
levels but also aligns well with demographic information, enhanc-
ing pr edictive performance by providing additional context. This
capability improves the model’s ability to identify patterns asso-
ciated with neurodegenerative biomarkers and underscores its
potential for robust neurodegenerative risk prediction.

Empirical analysis 
Figure 7 presents the results of our empirical analysis of the 
PPI network, focusing on edge density and interaction types.
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Figure 5. Prediction enhancement by incorporating synergetic effects. For 13 machine learning algorithms, the performance of neurodegenerative risk 
prediction based on learning the independent effect was compared with that based on learning the synergistic effect.

Figure 6. Prediction enhancement by integrating demographic information. The enhanced predictions were achieved by integrating demographic 
information, suc h as participants’ age, sex, and education scores, into PPIxGPN.

First, compared to neurodegenerative risk prediction based 
on learning only independent effects, incorporating synergetic 
effects between proteins via PPIs resulted in an average 12.9% 
increase in AUROC, with performance improvements ranging
from 9.8% to 15.1% depending on edge density (Fig. 7a). The 
analysis also showed that higher edge density led to better 
predictive performance, where using all edges yielded the highest 
performance with an AUROC of 0.748, which is 4.8% higher 
than the AUROC of 0.714 achieved when only 20% of the edges 
were used. Next, when highlighting the edges corr esponding
to functional, physical, and regulatory interactions in the
constructed PPI network, all three networks outperformed the
original network, achieving an average 1.1% improvement in
AUROC (Fig. 7b). Among these three interaction types, highlight-
ing functional interactions produced the best result with an 
AUROC of 0.761, which was on average 1.7% higher than the 
original performance. These findings demonstrate that a model 
comprehensively accounting for PPIs can enhance the accuracy
of neurodegenerative disease risk prediction, suggesting that
adopting differentiated strategies based on interaction types may
be effective.

Explanatory anal yses
Discriminative significance of the synergetic effect
We evaluated the discriminative significance of the synergetic 
effect derived from PPIxGPN. Initially, the propagation parameters 

of the target proteins a veraged 1.25, with NEFL showing the
highest value at 3.47 (Fig. 8a and Supplementary Table S3). 
A correlation of −0.1849 (P-value = 4.99 × 10−2) was observed 
between these parameters and the fluctuation of effects. 
Compared to the independent effect, the synergetic effect resulted 
in a 12.5% reduction in average expression values, decreasing 
from 0.497 (±0.004) to 0.435 (±0.111). Among the proteins, 34 
(30.1%) exhibited increased expr ession, while 79 (69.9%) showed
decreased expression, a statistically significant change with a P-
value of 1.42 × 10−8 (Fig. 8b and Supplementary Table S4). Notably, 
transitioning from the independent effect to the synergistic 
effect led to a 27.4-fold increase in the standard deviation 
of average expression values. Additionally, the differences 
betw een the two effects showed a strong correlation (∼0.9, P-
value = 1.55 × 10−23) with the node degree of proteins in the PPI
network (Supplementary Table S5), underscoring the enhanced 
differentiation among proteins achieved b y incorporating PPIs.

Furthermore, a comparison of the statistical significance 
between the independent and synergetic effects across diagnostic 
groups for neurodegenerative biomarkers revealed substantial 
improvement. The synergetic effect achieved an average P-
value of 6.87, r epresenting a 39.4% enhancement compared
to the independent effect, which had an average P-value of
4.93 (Fig. 8c and Supplementary Table S6). Additionally, the 
propagation parameters were positively correlated with the – 
log10 P-values of target proteins in the synergetic effect (Pearson
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Figure 7. Empirical analysis of the PPI network. In predicting neurodegenerative risk: (a) shows the variation in the performance of PPIxGPN according 
to the edge density of the PPI network, while (b) compares the performance of PPIxGPN when functional, physical, and regulatory intera ctions are
highlighted in the original network.

Figure 8. Discriminative significance of the synergetic effect. (a) Illustrates the distribution of propagation parameters for the target proteins. (b) 
Compares the protein expressions between the independent and synergetic effects. (c) Evaluates the statistical significance of diagnostic group 
discrimination betw een the independent and synergetic effects.

correlation = 0.3606, P-value = 8.71 × 10−5). These results demon-
strate that the synergetic effect derived from PPIxGPN offers 
a significantly enhanced capacity to distinguish variations in 
protein expression and their associations with diagnostic groups, 
compared to the independent effect. The improved discrimination 
and increased statistical significance highlight the critical role of
incorporating PPI networks in predicting neurodegenerative risks
and capturing the intricate interactions among proteins.

Predictive importance of the tar get proteins
We further assessed the predictive importance of the target pro-
teins for predicting neurodegenerative risks. First, a comparison 
of the estimation parameters for each biomarker revealed that, 
except f or Aβ, more proteins exhibited negative values for the
remaining three biomarkers (Fig. 9a and Supplementary Table S7). 
Overall, 48.9% of the proteins contributed to an increase in 
risks through positive estimation parameter values. Of the 
target proteins, 13 (11.5%) proteins showed positive estimation 
parameter values across all biomarkers, with NEFL and GFAP 
standing out with the most pr ominent sum of the parameters.
Moreover, the estimation parameters showed a positive correla-
tion (Pearson correlation = 0.5291, P-value = 5.74 × 10−34) with the 
diagnostic group-wise differences between the independent and 
synergetic effects. Next, the importances of target proteins for 
neurodegenerative risk p rediction were evaluated using SHapley
Additive exPlanations (SHAP) [57]. The average of importances 
was 0.41, with 41 proteins (36.3%) exceeding this threshold (Fig. 9b 
and Supplementary Table S8), and NEFL and GFAP scored the 

highest importances, at 2.73 and 2.45, respectively, followed by 
MB (1.05), CA3 (0.86), and CRIP2 (0.77). A significant positive
correlation (Pearson correlation = 0.7313, P-value = 3.69 × 10−20) 
was observed between the protein importances and their 
individual contributions to prediction performance, measured 
by the change in A UROC when each protein was excluded from
the synergetic effect.

Additionally, the target proteins with significant impacts on 
increasing risks for neurodegenerative biomarkers were identified 
by combining estimation parameters and importance scores. For 
each biomarker, proteins within the top 10% for both metrics 
were selected as major proteins, resulting in a total of 19 major
proteins: 4 for Aβ, 5 for GFAP, 4 for NfL, and 9 for pTau (Fig. 9c 
and Supplementary Table S9). Among these, three proteins— 
GFAP, NEFL, and KLK4—were selected as major proteins for two 
biomarkers each, where GFAP protein was selected for both GFAP 
and pTau, NEFL protein for both GFAP and NfL, and KLK4 protein 
for both NfL and pT au. Then, the effectiveness of these major
proteins was validated by analyzing diagnostic group-wise differ-
ences in risk score distributions. As shown in Fig. 9d, the positive 
diagnosis group had an average risk score of 0.637 from major 
proteins that was 20.1% higher than that from minor proteins, 
while the negative diagnosis group showed a 1.6% increase. This 
resulted in a difference in average risk scores between diagnostic 
groups for major proteins (0.160), which was 164.6% greater than 
the difference observed for minor proteins (0.060). Furthermore,
the risk scores derived from major proteins achieved an AUROC
of 0.791 and an AUPRC of 0.562, representing improvements of
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Figure 9. Predictive importance of the target proteins. (a) Compares the estimation parameters for target proteins, including the correlation between 
group-wise differences between the two effects and the estimation parameters. (b) Presents the SHAP-driven predictive importance of target proteins, 
along with the correlation between performance contribution and protein importance. (c) Identifies major proteins for neurodegenerative biomarkers 
and (d) evaluates their effectiveness in neurodegenerative risk prediction.

33.3% and 93.2%, respectively, compared to the risk scores derived 
from minor proteins. As a result, this analysis enabled the iden-
tification of the predictive contributions of proteins. In particular, 
by integrating estimation parameters and importance scores, 19 
major proteins were identified as key contributors to risk predic-
tion for neurodegenerative biomarkers, demonstrating stronger
associations with diagnostic group discrimination and enhancing
the predicted risk scores.

Survival anal ysis
At last, we performed a survival analysis to investigate longi-
tudinal changes associated with neurodegenerative biomarkers 
based on the predicted risk scores. Of the 758 participants with 
follow-up data, the baseline negative diagnosis groups comprised 
621, 628, 594, and 601 participants for Aβ, GFAP, NfL, and pTau, 
respectively. Participants with predicted risk scores above 0.5 for
each biomarker were classified as the high-risk group, including
233 participants for Aβ, 169 for GFAP, 154 for NfL, and 168 for
pTau. As shown in Fig. 10, the results of this analysis revealed 
significant differences in survival probabilities between high-risk 
and low-risk groups, indicating that higher predicted risk scores 
are associated with markedly lower survival probabilities across 
all biomarkers. The hazard ratios for the biomarkers were derived 
as follows: Aβ at 1.507 (95% CI: 1.066–2.132), GFAP at 2.138 (95% CI: 
1.351–3.381), NfL at 3.5 18 (95% CI: 2.296–5.390), and pTau at 2.443 
(95% CI: 1.554–3.840), with NfL demonstrating the strongest asso-
ciation with survival outcomes. These findings suggest that the 
risks predicted by PPIxGPN are strongly linked to the progression
of neurodegeneration, underscoring the capacity of PPIxGPN to
enhance early detection of neurodegenerative diseases by effec-
tively capturing dynamic changes in biomarker profiles over time.

Conclusion 
In this study, we introduce PPIxGPN, an explainable ML model 
that integrates PPI networks into plasma proteomic profiling 

of neurodegenerative biomarkers, offering two key advantages. 
First, unlike conventional ML approaches that assess proteins 
independently, PPIxGPN captures synergetic effects by integrating 
the independent effects of target proteins with the PPI network. 
Through globality-based feature aggregation, PPIxGPN constructs 
a comprehensive representation of the PPI network—particularly 
valuable for modeling blood-based biomarkers such as Aβ42/40, 
GFAP, NfL, and pTau181—since it identifies both individual 
expression levels and network-level interdependencies tied to 
disease risk. Experimental results on the UKB dataset confirm 
PPIxGPN’s superior performance over comparison methods. 
Second, PPIxGPN adopts a shallow, two-layer architecture (a single 
propagational layer followed by a fully connected layer), ensuring 
high explainability by reducing parameter complexity, clarifying 
each parameter’s function, and making the o verall process easier
to trace. Such intuitive design is especially critical in medical
contexts, where clear insight into the biological understanding
of model outputs is essential. Furthermore, by identifying major
proteins for the neurodegenerative biomarkers and analyzing
longitudinal changes in their diagnosis, PPIxGPN not only
highlights the biological relevance of these proteins through
interpretable outcomes but also effectively captures temporal
shifts in biomarker profiles, underscoring its clinical applicability.

Here are some remarks on the method we proposed. First, 
the findings in this study are limited to a single cohort with 
internal validation due to the scarcity of public datasets 
that include both neurodegenerative biomarkers and plasma 
proteins. Future studies should validate PPIxGPN using external, 
multi-cohort datasets across diverse ethnic backgrounds to 
improve its ro bustness and generalizability. Second, PPIxGPN
can be enhanced by constructing a more refined PPI network,
considering the imbalanced nature of PPI characteristics to
achieve a more sophisticated representation of protein data [58, 
59]. Third, PPIxGPN can be further enriched into a biologically 
informed model by incorporating molecular pathways and
functional annotations, allowing for a deeper understanding of
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Figure 10. Survival analysis for longitudinal changes in neurodegenerative biomarkers. Kaplan–Meier survival curves (a–d) illustrate the progression from 
baseline negativity to follow-up positivity for high-risk and low-risk groups based on the predicted risk scores for Aβ, GFAP, NfL, and pTau, respectively. 
Participants with predicted risk scores exceeding 0.5 for each biomarker were classified as the high-risk group.

disease mechanisms beyond protein interactions alone. Fourth, 
extending PPIxGPN into a multimodal model by integrating 
genetic information, neuroimaging data, and clinical parameters 
could enhance its ability to predict disease progression, offering 
more clinically meaningful insights for precision medicine. 
Last, to bridge the gap between research and clinical practice, 
further efforts should focus on adapting PPIxGPN for real-
world applications, including the development of user-friendly
clinical tools that allow healthcare professionals to interpret its
predictions effectively.

Key P oints

• We introduce Protein–Protein Interaction-based eXplain-
able Graph Propagational Network (PPIxGPN), a novel 
machine learning (ML) model designed for plasma pro-
teomic profiling of neurodegenerative biomarkers, pre-
dicting individual risks for β-amyloid, glial fibrillary 
acidic protein, neurof ilament light, and phosphory-
lated tau.

• PPIxGPN integrates the protein–protein interaction (PPI) 
network with the independent effects of proteins, cap-
turing synergetic effects through globality-based feature 
aggr egation, which enhances the comprehensive repre-
sentation of PPI networks.

• PPIxGPN ensures high explainability with a shallow two-
layer architecture, providing interpretable outputs that 
impro ve understanding of biological significance and 
disease progression.

• Experimental validation confirms PPIxGPN’s superior 
performance in predicting neurodegenerative risks, 
demonstrating its ability to identify biologically relevant 
proteins , generate explainable outcomes, and capture 
longitudinal biomarker changes.

• This study presents PPIxGPN as a powerful, explain-
able, and biologically informative ML model, offering 
improved predictive accuracy and clinical interpretabil-
ity, with strong potential for early diagnosis and pre-
cision medicine applications in neurodegenerative dis-
eases.
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