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Abstract

Background: Although drug discoveries can provide meaningful insights and significant enhancements in
pharmaceutical field, the longevity and cost that it takes can be extensive where the success rate is low. In order to
circumvent the problem, there has been increased interest in ‘Drug Repositioning’ where one searches for already
approved drugs that have high potential of efficacy when applied to other diseases. To increase the success rate for
drug repositioning, one considers stepwise screening and experiments based on biological reactions. Given the
amount of drugs and diseases, however, the one-by-one procedure may be time consuming and expensive.

Methods: In this study, we propose a machine learning based approach for efficiently selecting candidate diseases
and drugs. We assume that if two diseases are similar, then a drug for one disease can be effective against the
other disease too. For the procedure, we first construct two disease networks; one with disease-protein association
and the other with disease-drug information. If two networks are dissimilar, in a sense that the edge distribution of
a disease node differ, it indicates high potential for repositioning new candidate drugs for that disease. The
Kullback-Leibler divergence is employed to measure difference of connections in two constructed disease networks.
Lastly, we perform repositioning of drugs to the top 20% ranked diseases.

Results: The results showed that F-measure of the proposed method was 0.75, outperforming 0.5 of greedy
searching for the entire diseases. For the utility of the proposed method, it was applied to dementia and verified
75% accuracy for repositioned drugs assuming that there are not any known drugs to be used for dementia.

Conclusion: This research has novelty in that it discovers drugs with high potential of repositioning based on
disease networks with the quantitative measure. Through the study, it is expected to produce profound insights for
possibility of undiscovered drug repositioning.
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Background
Development of new drugs is carried out when there are
no drugs to cure diseases or alleviate their clinical symp-
toms, or there are some motivations related to side
effects [1]. Most of new drugs, which have been devel-
oped until now, used a method of de novo drug design-
ing, which undergoes many phases covering from drug
target discovery and screening to Absorption, Distribu-
tion, Metabolism, Excretion and Toxicity (ADMET) and
Lead Optimization. Finally this method performs 3
phases of clinical tests in clinical areas and then approve
a drug and commercializes it [2]. The whole processes

for de novo drug discovery requires 10 ~ 17 years of
period and tremendous cost of 300 ~ 600 million dollars,
which is a deteriorated figure compared to 10 million
dollar in 1970 and 100 million dollars in 2000 [3].
In order to solve problems of high cost and rate of

failure with traditional drug discovery, drug reposi-
tioning has appeared [4]. Drug repositioning is a process
to find probabilities that an already-approved drug could
be applied to other diseases. This method, unlike con-
ventional de novo method, has a most significant benefit
that it could reduce required time to 3 ~ 12 years
through in vitro or in vivo method [5]. Some of major
success cases include a case that sildenafil is applied to
erectile dysfunction and also a case that thalidomide is
applied to multiple myeloma [6, 7]. This approach,

* Correspondence: shin@ajou.ac.kr
Department of Industrial Engineering, Ajou University, 206 Worldcup-ro,
Yeongtong-gu, Suwon 16499, South Korea

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Medical Informatics and Decision Making 2017, 17(Suppl 1):55
DOI 10.1186/s12911-017-0449-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-017-0449-x&domain=pdf
mailto:shin@ajou.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


however, has weaknesses in that it still relies on prior
knowledge for manual method and clinical trials in wet
bench and in that success stories are serendipitous and
rare. Therefore, in silico drug repositioning which selects
and predict new targets for drugs via computational
approach are attracting people’s attentions [8]. In silico
drug repositioning uses data for drugs, diseases and
other relevant information. With such data, it performs
a process to calculate probability of success for new indi-
cations found in conventional drugs by designing
systematic algorithm and then finally predicts drug repo-
sitioning for selected high potential and evaluates its
performance with accuracy [9]. So far, there have been
numerous studies for in silico drug repositioning which
could be divided into two mainstreams, drug-based
approach and disease-based approach.
Drug-based approach attempts drug repositioning

focusing on characteristics of drugs in terms of pharma-
ceutical aspects. Most of conventional researches pre-
dicted new targets of drugs by calculating similarities
using drug-related information. Lamb et al. (2006) used
molecule movement information for chemicals that are
components of drugs [10], Keiser et al. (2009) took
advantage of chemical structure and targeted protein
information of drugs [11] while Chang et al. (2010) used
tissue localization and gene expression pattern together
[12]. However, information for drug’s chemical structure
and characteristics contains numerous errors and
moreover it’s hard to access such information due to
ownership of drug manufacturers. Moreover, there is
limitation for correct prediction due to complicated
metabolic and pharmacokinetic transformations inside
human body. Disease-based approach is started by iden-
tifying features of diseases at their gene or protein levels
in terms of pathological aspects with proper medicine.
In conventional studies, Chiang et al. (2009) approached
a drug repositioning through “guilt by association” under
assumption that if two diseases share few number of
similar therapies, then a drug used for a certain disease
could be used for other disease [13], Campillos et al.
(2008) predicted new targets for drugs by calculating
similarities between diseases based on side effect that
appears from injection of drug [14]. However there are
also limitations that lots of complex factors affect path-
ology of diseases and information for side effect should
be well arranged and its amount should be also enough.
Although In silico drug repositioning methods are

classified into two major ones, they mostly rely on an
assumption based on similarity. Such assumption in
drug-based approach is that similar drugs would have
similar therapeutic influence upon the targets while
assumption in disease-based approach is that similar
diseases require similar therapy and thus the same drugs.
Computational method to advance these assumptions is

network-based modeling [15]. Drug repositioning based on
network-based modeling is able to consider overall relations
between diseases in terms of direct and indirect relations.
In addition, this is able to extend relation between drugs
and targets to “many-to-many” from “one-by-one” in terms
of network [16]. Under these conditions, Suthram et al.
(2010) attempted drug repositioning by structuring
functional module network using molecular biological
information and protein-protein interaction(PPI) [17].
In this paper, we propose a methodology to implement

drug repositioning via in silico to maximize effectiveness
in terms of time and cost. From disease-based approach
which is easy to be used with relatively lots of data, the
proposed method includes network modeling which is
easy to address relations between diseases and machine
learning algorithm based on such relations. The pro-
posed method is devised under an assumption that simi-
lar disease could be treated by similar drugs. If a disease
with similar symptom doesn’t use similar drug even if
two diseases are similar, then there could be an oppor-
tunity to reposition drugs between the two diseases. The
proposed method is called Network Mirroring and its
overview is shown in Fig. 1. Figure 1 shows a toy
example in which it proposes 4 drugs (Dr1 ~Dr4) with 5
proteins (Pr1 ~ Pr5) against 6 diseases (DA ~DF).
Protein-based Disease Network(PrDN) and Drug-based
Disease Network(DrDN) are disease networks con-
structed with protein and drug information, respectively.
DrDN is reflected from PrDN through network mirror-
ing and the relationships between disease nodes are
identified. In the figure disease nodes are prioritized on
the basis of difference in edges between diseases. From
all six diseases, DA is selected by first priority. For other
five diseases, we applied a machine learning algorithm
(Additional file 1) on PrDN to obtain scores. The most
highly scored disease is believed to be most similar in
terms of molecular biology. DD is selected as the most
similar disease compared to DA. Then, with identifying
Dr4 to be used for DD from disease-drug association and
then repositions it to DA.
This paper consists of following sections: Section 2 ex-

plains procedures for Network Mirroring and Section 3
includes results of experiment that applied Network
Mirroring to actual diseases. Section 4 represents our
conclusion.

Methods
Network mirroring for drug repositioning
In this paper, we propose Network Mirroring as a new
method to reposition drug. The proposed method is
based on disease network. Disease network expresses
relations between diseases by nodes and edges in graph
in G = (D,W). Node set D is a disease and edge set W is
calculated by similarity between diseases. In this case,
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meaning of similarity is varying depending on informa-
tion used by calculating edges. Two disease networks are
constructed by using different information. First one is a
disease network based on protein information that
diseases share and the other uses drug-related informa-
tion for diseases. From the constructed networks, we
can compare two disease networks. If drugs are well
developed relying on molecular biological similarity
between diseases, the two disease networks would be
similar. However, such networks are different, there
could be a possibility for drug repositioning. It is
because diseases with similar molecular biology are
likely to use same drugs. Network Mirroring based on
such intuition consists of 4 steps. First, it builds two

disease networks using protein and drug information re-
spectively. Second, candidate disease is selected based
on most different edges in two disease networks. Third,
similar diseases are selected by similarity of candidate
disease through machine learning algorithm and then
candidate drugs are selected to be used for such
diseases. Lastly, it repositions candidate drugs onto can-
didate disease. Schematic description for the proposed
method is shown in Fig. 2.

Disease network construction
From preceding studies on how to build disease net-
work, Hidalgo et al. (2009) constructed network indicat-
ing co-occurrence between diseases by calculating edges

Fig. 1 Network Mirroring. PrDN and DrDN are disease networks using protein information and drug information respectively. If we reflect the two
networks, it would be easier to identify diseases with different connections. Different connections of disease nodes in two networks indicate that
diseases which are similar in PrDN i.e. they share same protein information actually have different drug profiles. Given that diseases with similar
bio-molecular characteristics can be treated by similar drugs, there is possibility of drug repositioning between these diseases

Fig. 2 Schematic description of the proposed method. The proposed method consists of a total 4 steps: a it builds two disease networks PrDN and
DrDN using protein and drug information respectively. b this step selects candidate disease by prioritizing diseases whose difference in edges is very
high by mirroring DrDN from PrDN c it scores on other diseases against candidate disease through machine learning algorithm and then selects
diseases whose score is high as similar diseases and then assigns candidate drugs which is used for such diseases d lastly, it repositions candidate
drugs onto candidate disease

The Author(s) BMC Medical Informatics and Decision Making 2017, 17(Suppl 1):55 Page 3 of 11



based on records of patients [18]. Besides this, there are
other studies constructing disease networks with various
disease-related information such as genetic character,
phenotype, protein interaction or metabolic pathway
[19–23]. In this paper, we use tripartite information for
protein-disease-drug to construct disease networks. This
tripartite relation indicates a certain procedure for out-
break and treatment of diseases. It is because a disease is
generated by abnormal protein and is treated by drug
which targets such protein. Under this environment, we
construct Protein-based Disease Network(PrDN) and
Drug-based Disease Network(DrDN) by separating the
tripartite information. Diseases on PrDN are connected
to each other related to same protein [24–28]. In this
case, connection between diseases indicate similarity of
molecular biology [29]. Since the possibility of similar
diseases being targeted by same drugs is high, PrDN
indicates the potential of using same drugs for similar
diseases. On the other hand, diseases on DrDN are con-
nected with the number of shared drugs which are used
for actual diseases [26, 28, 30]. Therefore, DrDN indi-
cates status quo of using same drugs for similar diseases.
Disease networks are graphs, PrDN = (D,WPr) and

DrDN = (D,WDr), that indicate connection between dis-
eases with nodes and edges. Because two networks have
same number and types of diseases, their node set is
same but their edge set is different. Edges between
diseases are calculated by Tanimoto similarity between
vectors, which represent information of diseases [31, 32].
Tanimoto similarity, if its data type is binary or integer
and if it’s sparse, is useful similarity measurement. Edge
set WPr uses protein vector while that of WDr uses drug
vector. Protein and drug vectors exist for each disease,
and all vector elements are binary type. The weight value
of each edge increases as the number of shared proteins
or drugs between the two diseases increases. Equation
(1) indicates calculation for similarity wij between
Disease i and Disease j. Di and Dj are vector for each
disease while Dik and Djk is k

th component for protein or
drug vector respectively.

wij ¼
X

k
Dik⋅Djk

X
k
Dik þ

X
k
Djk−

X
k
Dik⋅Djk

ð1Þ

Candidate disease prioritization
In the candidate disease prioritization step, we select a
disease for drug repositioning. For this purpose, the
process searches diseases whose edge distribution is
different by comparing PrDN and DrDN and then
prioritizes them. Therefore, we apply the Kullback-
Leibler(KL) divergence to compare all diseases quantita-
tively. The KL divergence is used to look into difference

between two probability distributions [33–35]. The for-
mula of KL divergence is shown in Eq. (2).

KL PjjQð Þ ¼
XN

i

Pi ln
Pi

Qi
ð2Þ

where Pi and Qi indicates probability function for prob-
ability variable i.
KL(P ∥Q) indicates difference between a probability

distribution P and Q (Note that the value is not symmet-
ric if applied in reverse order, Q from P). KL is 0 if
distribution of P and Q is same, otherwise it is other
value than 0.
The proposed method in this study considers reflection

of PrDN on DrDN since PrDN is a network providing
information on potential drug repositioning. Therefore a
probability distribution P in Eq. (2) is substituted by PrDN
whereas a probability distribution Q is substituted by
DrDN. However, KL divergence is calculated through
probability value, pre-processing is required to convert wij

into probability. In this case, edge is converted into
exponential type to improve sparseness of data and then
probability is calculated as shown in Eq. (3).

pij ¼
ewij

XN

k
ewik

ð3Þ

where N denotes the number of diseases.
pij could be an expression of probability for weight of

Dj among diseases connected to Di. Likewise, qij is also
calculated by same equation. KL divergence is calculated
for each disease and the bigger value is more highly pri-
oritized by its orders. In other words, calculation of KL
divergence for ith disease is expressed by Eq. (4).

KLi pij∥qij
� �

¼
XN

i

pij ln
pij
qij
; pij; qij∈R

N ð4Þ

where pij and qij indicates probability value where ith dis-
ease is converted by PrDN and DrDN respectively.
With this process, upper σ% of diseases will be

assigned to candidate disease for drug repositioning. σ is
a user-specific parameter. We can see the example for
candidate disease prioritization step through Fig. 2b. DA

is connected to DB and DD in PrDN while it is con-
nected to DC and DE in DrDN, which means it is con-
nected to totally different diseases between two disease
networks. On the contrary, DF is connected to DD and
DE in both PrDN and DrDN. From assumption sug-
gested by the proposed method, we can see intuitively
that DA with totally different connection is more likely
to have probability of drug repositioning than DF with
perfectly same connection on two disease networks. This
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process and quantitative comparison procedures are
shown in Fig. 3.

Candidate drug selection and drug repositioning
Candidate drug selection step is a process to select drug
to be repositioned for candidate disease. We define Can-
didate Drugs as drugs that are used for disease that are
similar to candidate disease. Similar diseases are selected
in a way that scores relations between candidate disease
and other diseases on PrDN using machine learning
algorithm and then the process selects disease whose
score is bigger. For such scoring, graph-based Semi-
Supervised Learning(SSL) algorithm is used [21]. SSL
algorithm shows good performance especially when the
number of labeled data is scarce compared to lots of
data such as biomolecular and drug data. Among them,
a suitable thing for network structure is graph-based
SSL algorithm. When a graph and labels are given, SSL
algorithm calculates predictive output, f-scores, for un-
labeled nodes. See Appendix A. The bigger strength of

connections between nodes leads to higher f-scores. The
fact that higher f-scores for unlabeled nodes indicate
that it is more similar to labeled nodes [22, 36, 37].
To assign similar diseases which are highly similar

with candidate disease biologically, PrDN’s edge set WPr

is applied to the algorithm. A candidate disease node is
set to be label ‘1’ and others are set to be ‘0’. Also, δ% of
all diseases are selected to similar disease. δ is a user-
specific parameter. Finally, all of drugs that used for
similar diseases are chosen as candidate drugs for a can-
didate disease. This procedure is formulated as shown in
Eq. (5).

DrCi ¼ ∪
ns

j¼1
Drug Dj

� � ð5Þ

where ns = |{S(Di)}|, Dj ∈ S(Di), Di, Dj ∈ PrDN.
In (5), S(⋅) is a neighborhood function, which

means Dj is one of similar diseases of Di. Drug(Dj)

Fig. 3 Toy example of Candidate Disease Prioritization. By comparing DA and DF, figures show results of candidate disease prioritization by step-
by-step. a expresses similarity vector for edges where DA and DF are connected to other diseases in PrDN and DrDN. b is a probability of similarity
from a through pre-processing. c is KL value that is calculated between two diseases according to formula. KLA is 0.2 and bigger than KLF that is
near 0. Therefore, intuitive decision for priority is digitized, we can see that same results are appearing. d and e are graphs which express
probability distributions for two diseases in b. These graphs display such distribution by order of bigger values. The reason for big difference in
KL value is evident by comparing d and e
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means drugs used for disease j and Dri
C means candi-

date drugs of disease i.
Toy example for candidate drug selection step is shown

in Fig. 2c. DAis selected as candidate disease through the
previous step. Therefore, label setting for all nodes is set to
be {DA,DB,DC,DD,DE,DF} = {1, 0, 0, 0, 0, 0}. As the results
of performing algorithm by applying PrDN’s edge set WPr

it’s proved that f-score for {DB,DC,DD,DE,DF} excepting
DAis {0.6,0.2,0.9,0.3,0.1} respectively. Since it takes upper
20% (δ = 20) of such diseases, DDis finally selected. Conse-
quently, drugs used for DD are selected as candidate drugs.
Finally, the last step of the process, drug repositioning by
repositioning candidate drugs onto candidate disease.
Figure 4 shows the pseudo code for Network Mirroring.

Results and discussion
Data
The proposed method is applied for all diseases which have
association with proteins and drugs. We collected disease
information from Medical Subject Headings(MeSH) in The
National Library of Medicine(NLM) [38]. The relational

information includes 161,223 disease-protein associations,
51,074 disease-drug associations and 91,450 drug-protein
associations from multiple databases. With these informa-
tion, we extracted diseases only having associations with
protein and drug. Finally, we used 2890 diseases, 23,499
proteins and 4603 drugs information for PrDN and DrDN.
We constructed PrDN using 161,223 disease-protein asso-
ciations. When DrDN was constructed, we computed new
disease-drug associations by combining existing disease-
protein associations and drug-protein associations. In this
case, disease and drug is related when they share same pro-
tein. The data used for construction of both networks are
accessible in [39]. Table 1 summarizes sources and types of
data used by the experiment.

Results on validity of network mirroring
We carried out verification as to how better performance
drug repositioning shows when it is performed through the
Network Mirroring. For this purpose, we divided all dis-
eases into 5 tiers that is top 20% (σ = 20) unit depending on
priority by candidate disease prioritization that is second

Fig. 4 Pseudo Code of Network Mirroring
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step of Network Mirroring. Figure 5 indicates Kullback-
Leibler divergence value for entire diseases and each tier.
For the next step, candidate drug selection and drug re-

positioning, we verified difference in performance for each
tier. In this case, we compared with predicted result of
drug repositioning with the reference experiment. In the
reference experiment, we carried out greedy searching for
the entire diseases. The experiment was repeated 10 times
by 10-fold cross validation to disease-drug associations.
The performance was measured on drug repositioning re-
sults in the last step of Network Mirroring. F-measure
was used for performance measure. The process selects
candidate drugs, which are all drugs used for similar dis-
eases, and repositions them to candidate disease. Thus,
the results consist of binary value (0 or 1). For binary re-
sults, F-measure is a suitable performance measurement
method [40]. Eq. (6) is formula of F-measure.

F−measure ¼ 2 precision� recallð Þ
precisionþ recall

ð6Þ

where precision ¼ TP
TPþFP recall ¼ TP

TPþFN

where TP, FP and FN indicate True Positive, False
Positive, False Negative respectively in confusion matrix
of Table 2.
Precision means the ratio of correct positive results to

all positive results. Recall indicates the ratio of correct
positive results to positive results that should have been
returned. F-measure is a harmonic mean of them and
Fig. 6 indicates F-measure for each tier.

Results on utility of network mirroring
In this section, we show utility of Network Mirroring via
dementia. The results are shown in step-by-step depend-
ing on the process concerning dementia. Dementia is
caused by brain damage from various factors. If a normal
person begins to suffer dementia, he or she shows critical
disorder in cognitive skills. As their memory, language
skills, decision making and abstractive thinking are deteri-
orated, it makes impossible to live a normal life [41, 42].
First, we show results of the candidate disease

prioritization step. Dementia, with its KL value of 0.68,
belongs to upper 8% of entire diseases. For comparison,
Urinary Incontinence, which falls on bottom 10% with
0.04 of KL value, is selected. Urinary incontinence is a

Table 1 Data for diseases, proteins, drugs, and disease-protein associations, disease-drug associations, drug-protein associations

Disease Protein Drug Associations

Disease-Protein Disease-Drug Drug-Protein

Number of Data 2890 23,499 4603 161,223 relations 51,074 relations 91,450 relations

Sources Medical subject Headings [38] Entrez Gene [48] PubChem [49] GAD [24] CTD [26] PharmGKB [27]

OMIM [25] TTD [28] T3DB [50]

CTD [26] DCDB [30] DrugBank [51]

PharmGKB [27] ChEMBL [52]

TTD [28] CTD [26]

TTD [28]

DCDB [30]

MATADOR [53]

Fig. 5 Kullback-Leibler divgergence value for entire diseases. The graph shows KL value on entire diseases by red line according to descending
order. Average value of each tier is expressed by bar. By comparing PrDN and DrDN, diseases with different connection show higher KL value
whereas ones with similar connection show lower KL value
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disease that a person urinates unconsciously due to dis-
order in regulating bladder. It occurs along with over-
active bladder, nocturia and other symptoms [43, 44].
Figure 7 shows probability distribution in PrDN and
DrDN for dementia and urinary incontinence which
shows big difference in KL value.
Next, we performed candidate drug selection and drug

repositioning for dementia. Three similar diseases for
dementia were selected from 2890 diseases, which is
equivalent to 0.1% (δ = 0.1) of the entire disease. These
three are lipid metabolism disorders, dyslipidemias and
hypertriglyceridemia by the order of higher f-score. A
total of 1296 candidate drugs are selected from similar
diseases and they are all repositioned to dementia (Note
that 1296 candidate drugs are ones targeting related pro-
teins of three diseases). Dementia is related to 1300
drugs previously, 945 drugs out of 1296 repositioned
ones covered existing drugs. Other 351 drugs are newly
predicted drugs which are not identified yet. Actual ef-
fects on these are verified by clinical literature. Clinical
literature showed the results of observing the progress
of medication to patients in order to evaluate the
effectiveness of medication. We used PubMed to search
clinical information. As results of verification, 25 drugs
out of newly repositioned 351 drugs for dementia are
verified to be actually effective for dementia through
clinical information literature. Proved results are shown
with drugs and PMID in Table 3. To summarize,

assuming that there are not any known drugs to be used
for dementia, 970 drugs (945 + 25), 75% (970/1296) are
verified to be repositioned via Network Mirroring.
Now, we look into cases of Vasopressin, Tolfenamic

acid and Creatine as major proved drugs through clinical
literature. These three drugs, when they are repositioned
for dementia, show high efficacy especially compared to
other drugs.

Vasopressin
In several subtypes of frontotemporal dementia (FTD),
damage to regions of the frontal and temporal lobes that
occurs early in the disease course critically impairs emo-
tional processing, social cognition, and behavior. Vaso-
pressin can not only affect social cognition and behavior,
but also serve as the potential implications for these
agents as novel treatments in FTD [45].

Tolfenamic acid
Tolfenamic acid lowers the levels of tau, which forms
pathological aggregates in Alzheimer’s disease and other
tauopathies, by promoting the degradation of the tran-
scription factor specificity protein 1 which regulates tau
transcription [46].

Creatine
Sixty four participants were able to keep their condition
healthy and stable by taking 8 g of creatine during
16 weeks of clinical trial. In addition, efficacy of creatine
to treat dementia could be verified through Serum8-
hydroxy-2'-deoxyguanosine (8OH2'dG) levels indicating
oxidative injury to DNA. Although this value is rapidly
increasing if condition for a patient aggravates, it could
be reduced to a normal condition by creatine treatment.

Table 2 Confusion Matrix

Predicted condition

Positive Negative

Actual condition Positive True Positive False Negative

Negative False Positive True Negative

Fig. 6 F-measure of each tier and entire diseases. The graph shows results of prediction for each tier through candidate drug selection and drug
repositioning. The most precise tier has 1st-tier of KL value indicating 0.75 of F-measure performance. On the other hand, 5th-tier which falls on
bottom 20% of KL value showed 0.17 that is the lowest accuracy. 5 tiers showed that they become more precise when their level is high.
Reference experiment showed 0.51 performance. To summarize, the proposed method is believed to be a meaningful methodology to perform
drug repositioning
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Therefore, if creatine is repositioned to dementia, it’s
believed to be effective for treatment [47].

Conclusion
In this paper, we propose Network Mirroring for drug
repositioning. The proposed method starts from an as-
sumption that diseases with similar molecular biological
characteristics are likely to use same drugs. We con-
structed two disease networks, PrDN and DrDN from
protein information and drug information and reflects
them. To check whether or not diseases with similar
molecular biological characteristics use similar drugs,
the criterion is PrDN. If they are different, such condi-
tion could be regarded as remaining room for drug
repositioning. We used Kullback-Leibler divergence for
quantitative comparison. Through the process, we select
candidate disease by prioritizing a list of diseases suitable
for drug repositioning. Then, we determine similar dis-
eases with the candidate disease based on graph-based
SSL algorithm. From similar diseases, we select candi-
date drugs. Finally, we complete Network Mirroring for

drug repositioning which repositions candidate drugs to
candidate disease.
For verification of the proposed method, we applied it

to 2890 diseases, 23,499 proteins and 4603 drugs informa-
tion. From the results, the proposed method preferably
repositions drugs in top 20% of diseases more effectively
than accessing to entire diseases. To observe the utility of
the proposed method, it was applied to dementia. The
selected drugs with Network Mirroring coincides with
existing drugs in usage. In addition, it also discovered
drugs with high potential of repositioning and the drugs
were verified through clinical literature. Through the
study, It is expected to produce profound insights for
possibility of undiscovered drug repositioning.
For future works, we can consider performance com-

parison with existing works for validation and develop
Network Mirroring into more sophisticated algorithm.
In the aspect of utility, by integrating various informa-
tion related to diseases, we plan to complement PrDN
and extend Network Mirroring not only to dementia but
also to other various diseases. In addition, we plan to

Fig. 7 Probability Distributions in PrDN and DrDN for Dementia and Urinary Incontinence. The graphs show probability distributions in PrDN and
DrDN to calculate KL value in the candidate disease prioritization step. a indicates a graph for dementia while b is a graph for urinary incontinence.
Both graphs are lined-up by descending order of probability value. From the two graphs, b urinary incontinence shows a little bit of difference at both
ends and almost overlapped interval is lengthy without significant difference. On the contrary, a dementia indicates significant difference without
overlapped interval between PrDN and DrDN

Table 3 Validated Drugs via Literature Survey

Drug PMID Drug PMID Drug PMID

Tolfenamic acid 25279694 Creatine 16434666 Vasopressins 21618004

Benzoic Acid 18317243 Putrescine 15324720 Diflunisal 25454121

Bupivacaine 25868211 Rivastigmine 27111084 Meclofenamic Acid 18164319

Hydrochlorothiazide 18604484 Indapamide 23743809 Tazarotene 22009441

Citrulline 25142005 Nabiloone 27232589 Lisnopril 25680080

Lutein 24200934 Azilsartan 25753301 Coenzyme A 24888381

Sucrose 26810632 Dronabinol 26271310 Inulin 27363809

Salicylic Acid 24113028 Quinapril 25680080 Fosinopril 26300914

Candesartan Cilexetil 12140732 25 drugs repositioned to Dementia are validated by clinical literatures.
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carry out more studies for discovering new repositioned
drugs for candidate diseases by considering information
regarding drug analogues used for treatment.

Additional file

Additional file 1: Graph-based Semi-Supervised Learning. (DOCX 38 kb)

Acknowledgments
HJS would like to gratefully acknowledge support from the National
Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIP) (No. 2012-0000994/2015R1D1A1A01057178) and the Ajou University
Research Fund.

Funding
Publication of this article was funded by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012-0000994).

Availability of data and materials
The data can be found in PharmDB (http://pharmdb.org/). PharmDB is a
tripartite pharmacological network database of human diseases, drugs, and
proteins, which compiles and integrates nine existing interaction databases.

Authors’ contributions
HJS designed the idea and supervised the study process. SHP and DGL
analyzed the data, implemented the results and wrote the manuscript. All of
the authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

About this supplement
This article has been published as part of BMC Medical Informatics and
Decision Making Volume 17 Supplement 1, 2017: Selected articles from the
6th Translational Bioinformatics Conference (TBC 2016): medical informatics
and decision making. The full contents of the supplement are available
online at https://bmcmedinformdecismak.biomedcentral.com/articles/
supplements/volume-17-supplement-1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 18 May 2017

References
1. Hughes J, Rees S, Kalindjian S, Philpott K. Principles of early drug discovery.

Br J Pharmacol. 2011;162(6):1239–49.
2. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new

uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–83.
3. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in

pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200.
4. Khanna I. Drug discovery in pharmaceutical industry: productivity challenges

and trends. Drug Discov Today. 2012;17(19):1088–102.
5. Barratt MJ, Frail DE. Drug repositioning: Bringing new life to shelved assets

and existing drugs. Wiley; 2012.
6. Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, Steers WD, Wicker PA. Oral

sildenafil in the treatment of erectile dysfunction. N Engl J Med. 1998;
338(20):1397–404.

7. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N,
Anaissie E, Wilson C, Dhodapkar M. Antitumor activity of thalidomide in
refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–71.

8. Dudley JT, Deshpande T, Butte AJ. Exploiting drug–disease relationships for
computational drug repositioning. Brief Bioinform. 2011;12(4):303–11.

9. Hurle M, Yang L, Xie Q, Rajpal D, Sanseau P, Agarwal P. Computational
drug repositioning: from data to therapeutics. Clin Pharmacol Ther.
2013;93(4):335–41.

10. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J,
Brunet J-P, Subramanian A, Ross KN. The Connectivity Map: using gene-
expression signatures to connect small molecules, genes, and disease.
Science. 2006;313(5795):1929–35.

11. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH,
Kuijer MB, Matos RC, Tran TB. Predicting new molecular targets for known
drugs. Nature. 2009;462(7270):175–81.

12. Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ. Drug off-target effects
predicted using structural analysis in the context of a metabolic network
model. PLoS Comput Biol. 2010;6(9):e1000938.

13. Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships to
identify leads for novel drug uses. Clin Pharmacol Ther. 2009;86(5):507.

14. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug target
identification using side-effect similarity. Science. 2008;321(5886):263–6.

15. Liu Z, Fang H, Reagan K, Xu X, Mendrick DL, Slikker W, Tong W. In silico drug
repositioning–what we need to know. Drug Discov Today. 2013;18(3):110–5.

16. Yıldırım MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M. Drug—target
network. Nat Biotechnol. 2007;25(10):1119–26.

17. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based
elucidation of human disease similarities reveals common functional modules
enriched for pluripotent drug targets. PLoS Comput Biol. 2010;6(2):e1000662.

18. Hidalgo CA, Blumm N, Barabási A-L, Christakis NA. A dynamic network approach
for the study of human phenotypes. PLoS Comput Biol. 2009;5(4):e1000353.

19. Davis DA, Chawla NV. Exploring and exploiting disease interactions from
multi-relational gene and phenotype networks. PLoS One. 2011;6(7):e22670.

20. Li Y, Agarwal P. A pathway-based view of human diseases and disease
relationships. PLoS One. 2009;4(2):e4346.

21. Nam Y, Kim M, Lee K, Shin H. CLASH: Complementary linkage with
anchoring and scoring for heterogeneous BioMolecular and clinical data.
BMC Med inform decis making. 2016;16(Suppl 3):72.

22. Shin H, Nam Y, Lee D-g, Bang S. The Translational Disease Network—from
proetin Interatction to Disease Co-occurrence. In: Proc of 4th Translational
Bioinformatics Conference (TBC) 2014 [US Patent-14/920447]. 2014.

23. Zhang X, Zhang R, Jiang Y, Sun P, Tang G, Wang X, Lv H, Li X. The
expanded human disease network combining protein–protein interaction
information. Eur J Hum Genet. 2011;19(7):783–8.

24. Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database.
Nat Genet. 2004;36(5):431–2.

25. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res. 2005;33(suppl 1):D514–7.

26. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-Richards C,
Sciaky D, King BL, Rosenstein MC, Wiegers TC. The comparative toxicogenomics
database: update 2013. Nucleic Acids Res. 2013;41(D1):D1104–14.

27. Whirl-Carrillo M, McDonagh E, Hebert J, Gong L, Sangkuhl K, Thorn C,
Altman R, Klein TE. Pharmacogenomics knowledge for personalized
medicine. Clin Pharmacol Ther. 2012;92(4):414.

28. Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res.
2002;30(1):412–5.

29. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD, Grimstone A. Molecular
Biology of the Cell (3rd edn). Trends Biochem Sci. 1995;20(5):210–0.

30. Liu Y, Wei Q, Yu G, Gai W, Li Y, Chen X. DCDB 2.0: a major update of the
drug combination database. Database. 2014;2014:bau124.

31. Jaccard P. Distribution de la flore alpine dans le bassin des Dranses et dans
quelques régions voisines. Bull. Soc. Vaud. Sci. Nat. 1901;37:241–72.

32. Tanimoto TT. IBM internal report. 1957.
33. Kullback S. Information theory and statistics. Courier Corporation; 1997.
34. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;

22(1):79–86.
35. Weinstein E, Feder M, Oppenheim AV. Sequential algorithms for parameter

estimation based on the Kullback-Leibler information measure. IEEE Trans
Acoust Speech Signal Process. 1990;38(9):1652–4.

36. Chapelle O, Scholkopf B, Zien A. Semi-supervised learning. 2006. Cambridge:
The MIT Press View Article Google Scholar; 2006.

37. Kim J, Shin H. Breast cancer survivability prediction using labeled, unlabeled,
and pseudo-labeled patient data. J Am Med Inform Assoc. 2013;20(4):613–8.

The Author(s) BMC Medical Informatics and Decision Making 2017, 17(Suppl 1):55 Page 10 of 11

dx.doi.org/10.1186/s12911-017-0449-x
http://pharmdb.org/
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-17-supplement-1
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-17-supplement-1


38. Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc. 2000;
88(3):265.

39. PharmDB [http://pharmdb.org]. Accessed 11 Jan 2016.
40. Powers DM. Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation. 2011.
41. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K,

Hasegawa K, Hendrie H, Huang Y. Global prevalence of dementia: a Delphi
consensus study. Lancet. 2006;366(9503):2112–7.

42. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global
prevalence of dementia: a systematic review and metaanalysis. Alzheimers
Dement. 2013;9(1):63–75:e62.

43. Irwin DE, Milsom I, Hunskaar S, Reilly K, Kopp Z, Herschorn S, Coyne K,
Kelleher C, Hampel C, Artibani W. Population-based survey of urinary
incontinence, overactive bladder, and other lower urinary tract symptoms in
five countries: results of the EPIC study. Eur Urol. 2006;50(6):1306–15.

44. Thomas TM, Plymat KR, Blannin J, Meade T. Prevalence of urinary
incontinence. Br Med J. 1980;281(6250):1243–5.

45. Finger EC. New potential therapeutic approaches in frontotemporal
dementia: oxytocin, vasopressin, and social cognition. J Mol Neurosci. 2011;
45(3):696–701.

46. Adwan L, Subaiea GM, Basha R, Zawia NH. Tolfenamic acid reduces tau and
CDK5 levels: implications for dementia and tauopathies. J Neurochem. 2015;
133(2):266–72.

47. Hersch S, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M, Como P,
Zimmerman C, Lin M, Zhang L. Creatine in Huntington disease is safe,
tolerable, bioavailable in brain and reduces serum 8OH2′ dG. Neurology.
2006;66(2):250–2.

48. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered
information at NCBI. Nucleic Acids Res. 2005;33 suppl 1:D54–8.

49. Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, Shoemaker BA, Gindulyte A,
Bryant SH. PubChem bioassay: 2014 update. Nucleic Acids Res. 2013;gkt978.

50. Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC, Neveu V, Wishart
DS. T3DB: a comprehensively annotated database of common toxins and
their targets. Nucleic Acids Res. 2010;38(suppl 1):D781–6.

51. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang
Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug
discovery and exploration. Nucleic Acids Res. 2006;34(suppl 1):D668–72.

52. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y,
McGlinchey S, Michalovich D, Al-Lazikani B. ChEMBL: a large-scale bioactivity
database for drug discovery. Nucleic Acids Res. 2012;40(D1):D1100–7.

53. Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed J,
Urdiales EG, Gewiess A, Jensen LJ. SuperTarget and Matador: resources for
exploring drug-target relationships. Nucleic Acids Res. 2008;36(suppl 1):D919–22.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Medical Informatics and Decision Making 2017, 17(Suppl 1):55 Page 11 of 11

http://pharmdb.org/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Network mirroring for drug repositioning
	Disease network construction
	Candidate disease prioritization
	Candidate drug selection and drug repositioning

	Results and discussion
	Data
	Results on validity of network mirroring
	Results on utility of network mirroring
	Vasopressin
	Tolfenamic acid
	Creatine


	Conclusion
	Additional file
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	About this supplement
	Publisher’s Note
	References

