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The support vector machine (SVM) has been spotlighted in the machine
learning community because of its theoretical soundness and practical
performance. When applied to a large data set, however, it requires a
large memory and a long time for training. To cope with the practical
difficulty, we propose a pattern selection algorithm based on neighbor-
hood properties. The idea is to select only the patterns that are likely to
be located near the decision boundary. Those patterns are expected to be
more informative than the randomly selected patterns. The experimen-
tal results provide promising evidence that it is possible to successfully
employ the proposed algorithm ahead of SVM training.

1 Introduction

The support vector machine (SVM) has been spotlighted in the machine
learning community because of its theoretical soundness and practical per-
formance. SVM has been highly successful in practical applications as di-
verse as face detection and recognition, handwritten character and digit
recognition, text detection and categorization (Byun & Lee, 2002; Dumais,
1998; Heisele, Poggio, & Pontil, 2000; Joachims, 2002; Moghaddam & Yang,
2000; Osuna, Freund, & Girosi, 1997; Schölkopf, Burges, & Smola, 1999).
However, when applied to a large data set, SVM training can become com-
putationally intractable. In the formulation of SVM quadratic programming
(QP), the dimension of the kernel matrix (M × M) is equal to the number
of training patterns (M) (Vapnik, 1999). Thus, when the data set is huge,
training cannot be finished in a reasonable time, even if the kernel matrix
could be loaded on the memory. Most standard SVM QP solvers have a time
complexity of O(M3): MINOS, CPLEX, LOQO, and MATLAB QP routines.
And the solvers using decomposition methods have a time complexity of
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Neighborhood Property–Based Pattern Selection for SVMs 817

I · O(Mq + q 3), where I is the number of iterations and q is the size of
the working set: Chunking, SMO, SVMlight, and SOR (Hearst, Schölkopf,
Dumais, Osuna, & Platt, 1997; Joachims, 2002; Schölkopf et al., 1999; Platt,
1999). Needless to say, I increases as M increases. Empirical studies have es-
timated the run time of common decomposition methods to be proportional
to O(Mp), where p varies from approximately 1.7 to 3.0 depending on the
problem (Hush, Kelly, Scovel, & Steinwart, 2006; Laskov, 2002). Moreover,
SVM requires heavy or repetitive computation to find a satisfactory model:
for instance, which kernel is favorable over the others (among RBF, poly-
nomial, sigmoid, and others) and, additionally, how to choose the kernel
parameters (width of basis function, polynomial degree, offset, and scale,
respectively). There has been a considerable amount of work related to this
topic, referred to as kernel learning, hyperkernels, and kernel alignment,
for example (see Ong, Smola, & Williamson, 2005, and Sonnenburg, Rätsch,
Schäfer, & Schölkopf, 2006). But the most common approaches for parame-
ter selection are dependent on (cross–) validation. This implies one should
train an SVM model multiple times until a proper model is found.

One way to circumvent this computational burden might be to select
some training patterns in advance. One of the distinguishable merits of
SVM theory is that it clarifies which patterns are important to training.
These patterns are distributed near the decision boundary, and fully and
succinctly define the classification task at hand (Cauwenberghs & Poggio,
2001; Pontil & Verri, 1998; Vapnik, 1999). Furthermore, the subset of support
vectors (SVs) is almost identical regardless of which kernel function is cho-
sen for training (Schölkopf, Burges, & Vapnik, 1995). From a computational
point of view, it is therefore worth identifying a subset of would-be SVs in
preprocessing, and then training the SVM model with the smaller set.

There have been several approaches to pattern selection that reduce the
number of training patterns. Lyhyaoui et al. (1999) proposed the 1-nearest
neighbor, searching from the opposite class after class-wise clustering. But
this method presumes no possible class overlap in the training set to find
the patterns near the decision boundary. Almeida, Braga, and Braga (2000)
conducted k-means clustering. A cluster is defined as homogeneous if it
consists of the patterns from the same class and heterogeneous otherwise.
All of the patterns from a homogeneous cluster are replaced by a single
centroid pattern, while the patterns from a heterogeneous cluster are all
selected. The drawback is that it is not clear how to determine the number
of clusters. Koggalage and Halgamuge (2004) also employed clustering to
select the patterns from the training set. Their approach is quite similar to
Almeida et al.’s (2000): clustering is conducted on the entire training set first,
and the patterns are chosen that belong to the heterogeneous clusters. For a
homogeneous cluster, on the contrary, the patterns along the rim of cluster
are selected instead of the centroid of Almeida et al. (2000). It is a relatively
safer approach since even in homogeneous clusters, the patterns near the
decision boundary can exist if the cluster’s boundary is almost in contact
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818 H. Shin and S. Cho

with the decision boundary. But, it has a relative shortcoming as well, in
that the patterns far away from the decision boundary are also picked as
long as they lie along the rim. Furthermore, the setting of the radius and
defining of the width of the rim are still unclear. In the meantime, for the
reduced SVM (RSVM) of Lee and Mangasarian (2001), Zheng, Lu, Zheng,
and Xu (2003) proposed using the centroids of clusters instead of random
samples. It is more reasonable since the centroids are more representative
than random samples. However, these clustering-based algorithms have a
common weakness: the selected patterns are fully dependent on clustering
performance, which could be unstable. Liu and Nakagawa (2001) made a
related performance comparison. Sohn and Dagli (2001) suggested a slightly
different approach. It utilizes fuzzy class membership through k nearest
neighbors. The score of fuzzy class membership is translated as a probability
of how deeply a pattern belongs to a class. By the scores, the patterns
having a weak probability are eliminated from the training set. However,
it overlooks the importance of the patterns near the decision boundary;
they are equally treated to outliers (noisy pattern far from the decision
boundary).

Active learning shares this issue of significant pattern identification
with pattern selection (Brinker, 2003; Campbell, Cristianini, & Smola, 2000;
Schohn & Cohn, 2000). However, there are substantial differences between
them. First, the primary motivation of active learning comes from the high
cost of obtaining labeled training patterns, not from that of training itself.
For instance, in industrial process modeling, obtaining even a single train-
ing pattern may require several days. In e-mail filtering, obtaining training
patterns is not expensive, but it takes many hours to label them. In pattern
selection, however, the labeled training patterns are assumed to already
exist. Second, active learning alternates between training with a newly in-
troduced pattern and making queries over the next pattern. On the contrary,
pattern selection runs only once before training as a preprocessor.

In this letter, we propose the neighborhood property—based pattern se-
lection algorithm (NPPS). The practical time complexity of NPPS is vM,
where v is the number of patterns in the overlap region around the decision
boundary. We utilize k nearest neighbors to look around the pattern’s pe-
riphery. The first neighborhood property is that “a pattern located near the
decision boundary tends to have more heterogeneous neighbors in their
class membership.” The second neighborhood property dictates that “a
noisy pattern tends to belong to a different class from that of its neighbors.”
And the third neighborhood property is that “the neighbors of the decision
boundary pattern tend to be located near the decision boundary as well.”
The first property is used for identifying the patterns located near the de-
cision boundary. The second property is used for removing the patterns
located on the wrong side of the decision boundary. And the third property
is used for skipping unnecessary distance calculation, thus accelerating the
pattern selection procedure. The letter also provides how to choose k for the
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Neighborhood Property–Based Pattern Selection for SVMs 819

proposed algorithm. Note that it has been skipped or dealt with as trivial
in other pattern selection methods that employ either k-means clustering
or the k-nearest neighbor rule.

The remaining part of this letter is organized as follows. Section 2 briefly
explains the SVM theory, in particular, the patterns critically affecting
the training. Section 3 presents the proposed method, NPPS, that selects
the patterns near the decision boundary. Section 4 explains how to choose
the number of neighbors, k—the parameter of the proposed method. Sec-
tion 5 provides the experimental results on artificial data sets, real-world
bench-marking data sets, and a real-world marketing data set. We conclude
with some future work in section 6.

2 Support Vector Machines and Critical Training Patterns

Support vector machines (SVMs) are a general class of statistical learning
architectures that perform structural risk minimization on a nested set struc-
ture of separating hyperplanes (Cristianini & Shawe-Taylor, 2000; Schölkopf
& Smola, 2002; Vapnik, 1999). Consider a binary classification problem with
M patterns (�xi , yi ), i = 1, . . . , M where �xi ∈ �d and yi ∈ {−1, 1}. Let us as-
sume that patterns with yi = 1 belong to class 1, while those with yi = −1
belong to class 2. SVM training involves solving the following quadratic pro-
gramming problem, which yields the largest margin ( 2

‖w‖ ) between classes.

min �( �w, ξ ) = 1
2
|| �w||2 + C

M∑
i

ξi ,

s. t. yi ( �w · �(�xi ) + b) ≥ 1 − ξi ,

ξi ≥ 0, i = 1, . . . , M, (2.1)

where �w ∈ �d , b ∈ � (see Figure 1, and an error tolerance parameter C ∈ �.
Equation 2.1 is the most general SVM formulation, allowing both nonsep-
arable and nonlinear cases. The ξ ’s are nonnegative slack variables, which
play a role of allowing a certain level of misclassification for a nonsepara-
ble case. The �(·) is a mapping function for a nonlinear case that projects
patterns from the input space into a feature space. This nonlinear mapping
is performed implicitly by employing a kernel function K (�x, �x′) to avoid
the costly calculation of inner products, �(�x) · �(�x).1 There are three typical

1 Aside from the computational efficiency by dot-product replacement, the kernels
provide operational benefits as well: it is easy and natural to work on (or integrate)
various types of data—vectors, sequences, text, images, and graphs, for example—and to
detect very general types of relations therein.
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820 H. Shin and S. Cho

Figure 1: SVM classification problem: Through a mapping function �(·), the
class patterns are linearly separated in a feature space. The patterns determining
both margin hyperplanes are outlined. The decision boundary is the halfway
hyperplane between margins.

kernel functions: RBF, polynomial, and sigmoid in due order,

K (�x, �x′) = exp(−||�x − �x′||2/2σ 2),

K (�x, �x′) = (�x · �x′ + 1)p,

K (�x, �x′) = tanh (ρ(�x · �x′) + δ). (2.2)

The optimal solution of equation 2.1 yields a decision function of the fol-
lowing form,

f (�x) = sign ( �w · �(�x) + b) = sign

(
M∑

i=1

yiαi�(�xi ) · �(�x) + b

)

= sign

(
M∑

i=1

yiαi K (�xi , �x) + b

)
, (2.3)

where αi s are nonnegative Lagrange multipliers associated with train-
ing patterns, respectively. The solutions, αi s, are obtained from the dual
problem of equation 2.1, which minimizes the convex quadratic objective

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/19/3/816/816850/neco.2007.19.3.816.pdf by C
ATH

O
LIC

 U
N

IV O
F KO

R
EA user on 08 M

ay 2025



Neighborhood Property–Based Pattern Selection for SVMs 821

function under constraints

min
0≤αi ≤C

W(αi , b) = 1
2

M∑
i, j=1

αiα j yi yj K (�xi · �xj ) −
M∑

i=1

αi + b
M∑

i=1

yiαi .

The first-order conditions on W(αi , b) are reduced to the Karush-Kuhn-
Tucker (KKT) conditions,

∂W(αi , b)
∂αi

=
M∑

j=1

yi yj K (�xi , �xj )α j + yi b − 1 = yi f̄ (�xi ) − 1 = gi ,

∂W(αi , b)
∂b

=
M∑

j=1

yjα j = 0, (2.4)

where f̄ (·) is the function inside the parentheses of sign in equation 2.3.
The KKT complementarity condition, equation 2.4, partitions the training
pattern set into three categories according to the corresponding αi s:

(a) gi > 0 → αi = 0 : irrelevant patterns

(b) gi = 0 → 0 < αi < C : margin support vectors

(c) gi < 0 → αi = C : error support vectors

Figure 2 illustrates those categories (Cauwenberghs & Poggio, 2001; Pontil
& Verri, 1998). The patterns belonging to category a are out of the margins,
thus irrelevant to training, while the patterns belonging to categories b and
c are critical and directly affect training. They are called support vectors
(SVs). The patterns of category b are strictly on the margin; hence, they
are called margin SVs. The patterns of category c lie between two margins;
hence, they are called error SVs but are not necessarily misclassified. (Note
that there is another type of SV belonging to the category of error SV. They
are incorrectly labeled patterns that could be located very far from the
decision boundary. We regard them as outliers that do not contribute to
margin construction. We focus only on the SVs located around the decision
boundary, not those located deep in the realm of the opposite class.) Going
back to equation 2.3, we can now see that the decision function is a linear
combination of kernels on only those critical training patterns (denoted as
SVs) because the patterns corresponding to αi = 0 have no influence on the
decision result:

f (�x) = sign

(
M∑

i=1

yiαi K (�xi , �x) + b

)
= sign

( ∑
i∈SVs

yiαi K (�xi , �x) + b

)
. (2.5)
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822 H. Shin and S. Cho

Figure 2: Three categories of training patterns.

Equation 2.5 leads us to an attempt that reduces the whole training set to a
subset of would-be SVs.

3 Neighborhood Property–Based Pattern Selection

To circumvent memory- and time-demanding SVM training, we propose a
preprocessing algorithm: a neighborhood property–based pattern selection
algorithm (NPPS). The idea of the algorithm is to select only those patterns
located around the decision boundary since they are the ones that contain
the most information. Contrary to a usually employed random sampling,
this approach can be viewed as informative or intelligent sampling. Figure 3
conceptually shows the difference between NPPS and random sampling in
selecting a subset of the training data. NPPS selects the patterns in the
region around the decision boundary, and random sampling selects those
from the whole input space. Obviously no one knows how close a pattern is
to the decision boundary until a classifier is built. However, we can infer the
proximity ahead of training by utilizing neighborhood properties. The first
neighborhood property is that “a pattern located near the decision bound-
ary tends to have more heterogeneous neighbors in its class membership.”
A well-known entropy concept can be utilized for the measurement of het-
erogeneity of class labels among k-nearest neighbors. And the measure will
lead us to estimate the proximity accordingly. Here, we define a measure
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Neighborhood Property–Based Pattern Selection for SVMs 823

a. NPPS

b. Random Sampling

Figure 3: NPPS and random sampling select different subsets. Open circles
and squares are the patterns belonging to class 1 and class 2, respectively. Filled
circles and squares are the selected patterns.
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824 H. Shin and S. Cho

by using (negative) entropy,

Neighbors Entropy (�x, k) =
J∑

j=1

Pj · logJ
1
Pj

,

where j indicates a particular class out of J classes, and Pj is defined
as k j/k, where k j is the number of the neighbors belonging to class j . In
most cases, a pattern with a positive value of Neighbors Entropy (�x, k)
is close to the decision boundary, and thus selected. Those patterns are
likely to be SVs, which correspond to the margin SVs in Figure 2b or the
error SVs in Figure 2c. Among the patterns having a positive value of
Neighbors Entropy (�x, k), noisy patterns are also present. Here, let us define
an overlap region as a hypothetical region in feature space shared by both
classes, and overlap patterns as the patterns in that region. (We defer the
finer definitions for overlap region and overlap patterns until section 4.1).
A set of overlap patterns contains the patterns located not only on the
right side of the decision boundary but also on the other side of it. The
latter denotes noisy patterns, which should be identified and removed as
much as possible because they are more likely to be the error SVs that
would be misclassified. To remove this noisy pattern, we take the second
neighborhood property: An overlap pattern or an outlier tends to belong to
a different class from its neighbors. If a pattern’s own label is different from
the majority label of its neighbors, it is likely to be incorrectly labeled. The
measure Neighbors Match (�x, k) is defined as the ratio of neighbors whose
label matches that of �x,

Neighbors Match (�x, k) = |{�x′|label(�x′) = label(�x), �x′ ∈ kNN(�x)}|
k

,

where k NN(�x) is the set of k nearest neighbors of �x. The patterns with a small
Neighbors Match (�x, k) value are likely to be the ones incorrectly labeled.
In that point of view, Neighbors Match can be interpreted as a confidence
for k-nearest neighbor classification. Only the patterns satisfying the two
conditions, Neighbors Entropy (�x, k) > 0 and Neighbors Match (�x, k) ≥ 1

J ,
are selected.

Figure 4 shows a toy example of how patterns are selected by the pro-
posed measures. The numbers scattered in the figure (1, 2, and 3) stand for
the class labels of the patterns. We assume J = 3 and k = 6. For represen-
tational simplicity, we consider only six patterns marked by dotted circles.
Table 1 presents the values of Pj , Neighbors Entropy, and Neighbors Match
for these marked patterns. Let us consider �x1 first. �x1 is remote from the
decision boundary belonging to class 1 and is thus surrounded by the
neighbors belonging to class 1. �x1 is not selected since it does not satisfy
the condition of Neighbors Entropy. Meanwhile, �x2 resides in a deep region
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Neighborhood Property–Based Pattern Selection for SVMs 825

Figure 4: A toy example. The numbers scattered in the figure (1, 2, and 3)
stand for the class labels of the patterns. The parameters are assumed to be
J = 3 and k = 6. For representational simplicity, we consider only 6 patterns
(out of 29) marked by dotted circles. Table 1 shows the patterns selected by
the proposed measures presenting details: the values of Pj , Neighbors Entropy,
and Neighbors Match.

of class 2, but it is a noise pattern labeled as class 1. Since the composition
of class membership of its neighbors is homogeneous (all of them belong
to class 2), it also has a zero value of Neighbors Entropy. Therefore, it is
excluded from selection. However, the case of the pattern �x2 is different
from the case of the pattern �x1; for the pattern �x2, all its neighbors belong
to a different class from the class of �x2, while for the pattern �x1, all its
neighbors belong to the same class that �x1 belongs to. We can differentiate
two cases by Neighbors Match, which is 1 for �x1 and 0 for �x2. In any case,
the remote patterns from the decision boundary are screened out by the
proposed measures. On the other hand, the pattern �x3 is close to the deci-
sion boundary, and the composition of the neighbors shows heterogeneous
class membership; two of them belong to class 1, another two belong to
class 2, and the rest belong to class 3. This leads to Neighbors Entropy =
1 and Neighbors Match = 1/3, and consequently satisfies the conditions.
Similarly, the patterns �x4 and �x5 are chosen. From the example, we can see
that the selected patterns are distributed near the decision boundary and
almost correctly labeled.

However, NPPS takes O(M2) to evaluate kNNs for M patterns, so the
pattern selection process itself can be time-consuming. To accelerate the
pattern selection procedure, we consider the third neighborhood property:
The neighbors of a pattern located near the decision boundary tend to be
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Neighborhood Property–Based Pattern Selection for SVMs 827

NPPS (D, k) {

[0] Initialize D0
e with randomly chosen patterns from D.

Constants, k and J , are given. Initialize i and various sets as follows:

i ← 0, S0
o ← ∅, S0

x ← ∅, S0 ← ∅.

while Di
e �= ∅ do

[1] Choose �x satisfying [Expanding Criteria].

Di
o ← {�x | Neighbors Entropy(�x; k) > 0, �x ∈ Di

e}.

Di
x ← Di

e − Di
o.

[2] Select �x satisfying [Selecting Criteria].

Di
s ← {�x | Neighbors Match (�x; k) ≥ 1/J, �x ∈ Di

o}.

[3] Update the pattern sets.

Si+1
o ← Si

o ∪ Di
o : the expanded,

Si+1
x ← Si

x ∪ Di
x : the nonexpanded,

Si+1 ← Si ∪ Di
s : the selected.

[4] Compute the next evaluation set Di+1
e .

Di+1
e ← ⋃

�x∈Di
o

kNN(�x) − (Si+1
o ∪ Si+1

x ).

[5] i ← i + 1.

end

return Si

}

Figure 5: NPPS algorithm.
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828 H. Shin and S. Cho

Table 2: Notation.

Symbol Meaning

D The original training set whose cardinality is M
Di

e The evaluation set at ith step
Di

o A subset of Di
e, the set of patterns to be expanded from Di

e, each
element of which will compute its k nearest neighbors to constitute
the next evaluation set, Di+1

e
Di

x A subset of Di
e, the set of patterns not to be expanded from Di

e, or
Di

x = Di
e − Di

o
Di

s The set of “selected” patterns from Di
o at ith step

Si
o The accumulated set of expanded patterns,

⋃i−1
j=0 D j

o

Si
x The accumulated set of nonexpanded patterns,

⋃i−1
j=0 D j

x

Si The accumulated set of selected patterns,
⋃i−1

j=0 D j
s the last of which SN

is the reduced training pattern set
kNN(�x) The set of k nearest neighbors of �x

located near the decision boundary as well. Assuming the property, one
may narrow the scope of computation from all the training patterns to the
patterns near the decision boundary. Only the neighbors of a pattern sat-
isfying Neighbors Entropy (�x, k) > 0 are evaluated in the next step. This
lazy evaluation can reduce the practical time complexity from O(M2) to
O(vM), where v is the number of patterns in the overlap region. In most
practical problems, v < M holds. In addition, any algorithm on efficient
nearest-neighbor searching can be incorporated into the proposed method
to further reduce the time complexity. There is a considerable amount of
literature about efficient searching for nearest neighbors. Some of it at-
tempts to save distance computation time (Grother, Candela, & Blue, 1997;
Short & Fukunaga, 1981), and others attempt to avoid redundant search-
ing time (Bentley, 1975; Friedman, Bentley, & Finkel, 1977; Guttman, 1984;
Masuyama, Kudo, Toyama, & Shimbo, 1999). Apart from them, there are
many sophisticated NN classification algorithms such as approximated
(Arya, Mount, Netanyahu, Silverman, & Wu, 1998; Indyk, 1998), condensed
(Hart, 1968), and reduced (Gates, 1972). (See also Berchtold, Böhm, Keim, &
Kriegel, 1997; Borodin, Ostrovsky, & Rabani, 1999; Ferri, Albert, & Vidal,
1999; Johnson, Ladner, & Riskin, 2000; Kleingberg, 1997; Tsaparas, 1999.)

The time complexity analysis for the fast NPPS can be found online at
http://www.kyb.mpg.de/publication.html?user=shin and Shin and Cho
(2003a), and a brief empirical result in appendix A. The algorithm and
related notations are shown in Figure 5 and Table 2.

4 How to Determine the Number of Neighbors

In this section, we briefly introduce a heuristic for determining the value
of k. Too large a value of k results in too many patterns being selected.
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Neighborhood Property–Based Pattern Selection for SVMs 829

Consequently, we will achieve little effect of pattern selection. Too small a
value of k, leads to few patterns selected. However, it may degrade SVM
accuracy since there are more chances to miss important patterns—the
would-be support vectors. The dilemma about k will not be symmetrical
because a serious loss of accuracy is not likely to be well compensated for
by the benefit of a downsized training set. This point relates to our idea: the
selected pattern set should be large enough to contain at least the patterns
in the overlap region. Therefore, we must first estimate how many training
patterns reside in the overlap region. Based on the estimate, the next step is
to enlarge the value of k until the size of the corresponding set covers the
estimate. Under this condition, the minimum value of k will be regarded as
optimal unless SVM accuracy degrades.

In the following sections, we first identify the overlap region R and the
overlap set V. Second, we estimate the lower bound on the cardinality of
V. Third, we define Neighbors Entropy set Bk with respect to the value
of k and some related properties as well. Finally, we provide a systematic
procedure for determining the value of k.

4.1 Overlap Region and Overlap Set. Consider a two-class classifica-
tion problem (see Figure 6),

f (�x) =
{ �x → C1 if f (�x) > 0,

�x → C2 if f (�x) < 0,
(4.1)

where f (�x) is a classifier and f (�x) = 0 is the decision boundary. Let us
define noisy overlap patterns (NOPs) as the patterns that are located on
the wrong side of the decision boundary. They are shown in Figure 6 as
squares located above f (�x) = 0 and circles located below f (�x) = 0. Let R
denote the overlap region—a hypothetical region where NOPs reside, the
convex-hull of NOPs, enclosed by the dotted lines in Figure 6. Similarly, let
us define correct overlap patterns (COPs) as the patterns that are enveloped by
the convex hull, yet in the right class side. Note that R is defined by NOPs,
but it contains not only NOPs but also COPs. Let V denote the overlap
set defined as the intersection of D and R (that is, the subset of D that
comprises NOPs and COPs. There are six NOPs and six COPs in Figure 6.
The cardinality of V is denoted as v.

4.2 Size Estimation of Overlap Set. Now we estimate v. Let PR(�x)
denote the probability that a pattern �x falls in the region R. Then we can
calculate the expected value of v from the given training set D as

v = MPR(�x), (4.2)
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830 H. Shin and S. Cho

Figure 6: Two-class classification problem where the circles belong to class 1
and the squares belong to class 2. The area enclosed by the dotted lines is defined
as overlap region R. The area comprises the overlap set V of NOPs and COPs.

where M is the number of the training patterns, say, M = |D|. The proba-
bility PR(�x) can be dissected class-wise, such as

PR(�x) =
2∑

j=1

P(�x ∈ R, C j ), (4.3)

where P(�x ∈ R, C j ) is the joint probability of �x belonging to class C j and
lying in R. Note that PR(�x) also can be interpreted as the probability of �x
being COPs or NOPs. Further, if the region R is divided into

R1 = {�x ∈ R | f (�x) ≥ 0} and R2 = {�x ∈ R | f (�x) < 0}, (4.4)

Equation 4.3 can be rewritten as

PR(�x) = P(�x ∈ R, C1) + P(�x ∈ R, C2)

= P(�x ∈ R1 ∪ R2, C1) + P(�x ∈ R1 ∪ R2, C2)

= {
P(�x ∈ R1, C2) + P(�x ∈ R2, C1)

}︸ ︷︷ ︸
(a)

+ {
P(�x ∈ R1, C1) + P(�x ∈ R2, C2)

}︸ ︷︷ ︸
(b)

. (4.5)
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Neighborhood Property–Based Pattern Selection for SVMs 831

In the last row, a and b denote the probabilities of the patterns located in R
that are incorrectly and correctly classified—NOPs and COPs, respectively.
Since all NOPs are the incorrectly classified patterns, a can be estimated from
the misclassification error rate Perror of the classifier f (�x). On the contrary, it
is not easy to estimate b.2 Therefore, what we can do in practice is to infer
the lower bound of it. Generally: the following inequality holds,

P(�x ∈ R j , C j ) ≥ P(�x ∈ R j , Ci ), j �= i. (4.6)

Based on that, equation 4.5 can be simplified as

PR(�x) ≥ 2Perror, (4.7)

and the lower bound of v becomes

v ≥ vL OW = 2MPerror (4.8)

from equation 4.2.

4.3 Pattern Set with Positive Neighbors Entropy. Let us define Bk

given a specified value of k,

Bk = {�x | Neighbors Entropy(�x, k) > 0, �x ∈ D}. (4.9)

Note that Bk is the union of Di
o’s, Bk =

N⋃
i=0

Do where N is the total number

of iterations in the algorithm NPPS (see Figure 5). The following property
of Bk leads to a simple procedure.

Lemma 1. A Neighbors Entropy set Bk is a subset of Bk+1:

Bk ⊆ Bk+1 2 ≤ k ≤ M − 2. (4.10)

Proof. Denote Pk
j as the probability that k j out of k nearest neighbors

belong to class C j . If �x ∈ Bk , then it means Neighbors Entropy (�x, k) > 0.
A positive Neighbors Entropy is always accompanied by Pk

j = k j

k < 1, ∀ j .
Therefore,

k j < k, ∀ j.

2 Of course, if R1 and R2 contain roughly the same number of correct and incorrect
patterns, the probabilities of a and b become similar. But this assumption will work only
when both class distributions follow the uniform distribution.
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832 H. Shin and S. Cho

Adding 1 to both sides yields

(k j + 1) < (k + 1), ∀ j.

Suppose the (k + 1)th nearest neighbor of �x belongs to C j∗ . Then (k j∗ + 1) <

(k + 1) holds for j∗, while k j < (k + 1) holds for j �= j∗. The inequalities
lead to Pk+1

j∗ < 1 and Pk+1
j �= j∗ < 1, respectively. As a consequence, we have a

positive Neighbors Entropy of �x in the case of the (k + 1)th nearest neighbor
as well. Therefore, Neighbors Entropy (�x, k + 1) > 0, which indicates �x ∈
Bk+1.

From lemma 1, it follows that bk , the cardinality of Bk , is an increasing
function of k.

4.4 Procedure for Determining the Number of Neighbors. Bk larger
than V merely increases the SVM training time by introducing redundant
training patterns. In contrast, Bk smaller than V could degrade the SVM
accuracy. Therefore, our objective is to find the smallest Bk that covers V.

Let us define kmin using the lower bound of v from equation 4.8:

kmin = min {k | bk ≥ vL OW, k ≥ 2 }.

From lemma 1, we know that bk is an increasing function of k. Therefore, it
is not necessary to evaluate the values of k less than kmin. Instead, we check
the stabilization of SVM training error rate Psvm

error only for the k’s larger than
kmin by increasing the value little by little. The optimal value of k is then
chosen as

k∗ = arg min { |Psvm
error(k) − Psvm

error(k + 1)| ≤ ε, k ≥ kmin}, (4.11)

where ε is set to a trivial value. Eauation 4.11 requires several dry runs
of SVM training. However, the runs are not likely to impose heavy com-
putational burden since the strong inequality bk << M holds for the first
smallest k’s, and hence the size of the training set (the selected pattern set)
is small. The procedure is summarized in Figure 7.3 The main contribution
of the proposed procedure is to limit the search space of k by means of the
lower-bound estimation of the size of overlap set. More details can be found
in Shin and Cho (2003b) and some empirical results in appendix B.

3 There are several benefits of using 1-NN rule as a Perror estimator in step 1 since it
is a local learning algorithm, simple, and computationally efficient. One can skip step 1 if
an approximate Perror of the problem is given a priori.
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Neighborhood Property–Based Pattern Selection for SVMs 833

[1] Estimate Perror:

P̂error is calculated based on the training error rate of 1-NN rule.

[2] Calculate the lower bound of v according to equation 4.8:

v ≥ vLOW = 2MP̂error.

[3] Find k∗ according to equation 4.11:

k∗ = arg min { |P svm
error(k) − P svm

error(k + 1)| ≤ ε, k ≥ kmin}.

where kmin = min {k | bk ≥ vLOW , k ≥ 2 }

and ε is a trivial value.

Figure 7: Procedure to determine the value of k.

5 Experiments

We applied NPPS to various kinds of data sets: artificial data sets, bench-
marking data sets, and a real-world marketing data set. The following three
sections present the experimental results in order.

5.1 Artificial Data Sets. The first problem was drawn from four gaus-
sian densities: the continuous XOR problem. A total of 600 training patterns,
300 from each class, were generated. The classes, C1 and C2, were defined
as

C1 =
{

�x | �x ∈ N1A ∪ N1B,

[−3
−3

]
≤ �x ≤

[
3
3

]}
,

C2 =
{

�x | �x ∈ N2A ∪ N2B,

[−3
−3

]
≤ �x ≤

[
3
3

]}
,

where

N1A =
{

�x|N
([

1
1

]
,

[
0.52 0

0 0.52

])}
,N1B =

{
�x|N

([−1
−1

]
,

[
0.52 0

0 0.52

])}
,

N2A =
{

�x|N
([−1

1

]
,

[
0.52 0

0 0.52

])}
,N2B =

{
�x|N

([
1

−1

]
,

[
0.52 0

0 0.52

])}
.
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834 H. Shin and S. Cho

See also Figure 11.1a. The second problem is the sine function problem. The
input patterns were generated from a two-dimensional uniform distribu-
tion, and then the class labels were determined by whether the pattern was
located above or below a sine decision function:

C1 =
{

�x | x2 > sin (3x1 + 0.8)2
,

[
0

−2.5

]
≤

[
x1

x2

]
≤

[
1

2.5

]}

C2 =
{

�x | x2 ≤ sin (3x1 + 0.8)2
,

[
0

−2.5

]
≤

[
x1

x2

]
≤

[
1

2.5

]}
.

To make the density near the decision boundary thicker, four different gaus-
sian noises were added along the decision boundary: N(�µ, s2 I ) where �µ is an
arbitrary point on the decision boundary and s is a gaussian width param-
eter (s = 0.1, 0.3, 0.8, 1.0). A total of 500 training patterns were generated
including noises. Figure 11.1b shows the problem.

For both problems, Figure 8 presents the relationship between distance
from decision boundary to a pattern and its value of Neighbors Entropy.
The closer to the decision boundary a pattern is, the higher the value
of Neighbors Entropy it has. Both Figures 8a and 8b ensure that
Neighbors Entropy is pertinent to estimating the proximity to the decision
boundary. Among the patterns with positive Neighbors Entropy values,
the ones that meet the Neighbors Match condition are selected. They are
depicted as filled circles against open ones. Note that the filled circles are
distributed nearer the decision boundary. The distribution of the selected
patterns is shown in Figures 11.3a and 11.3b.

NPPS changes the size as well as the distribution of the training set. Such
changes may change the optimal value of hyperparameter that brings the
best result. Thus, we first observed the effect of change of training set. The
SVM performance was measured under various combinations of hyperpa-
rameters such as (C, σ ) ∈ {0.1, 1.0, 10, 100, 1000} × {0.25, 0.5, 1, 2, 3}, where
C and σ indicate misclassification tolerance and gaussian kernel width,
respectively. For each of the artificial problems, 1000 test patterns were gen-
erated from the statistically identical distributions to its original training
set. We compared the test error rates (%) of SVM when trained with all
patterns (ALL), trained with random patterns (RAN), and trained with the
selected patterns (SEL).

Figure 9 depicts the test error rate over the hyperparameter variation
for Continuous XOR problem. The most pronounced feature is the higher
sensitivity of SEL to hyperparameter variation than before (ALL). It may be
caused by the fact that the patterns selected by NPPS are mostly distributed
in the narrow region along the decision boundary. In Figure 9a, for instance,
SEL shows a sudden rise of the test error rate for σ larger than a certain
value when C is fixed, and similarly, a sharp descent after a certain value
of C when σ is fixed. An interesting point is that SEL can always reach
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Neighborhood Property–Based Pattern Selection for SVMs 835

Figure 8: The relationship between the distance from decision boundary and
Neighbors Entropy. The closer to decision boundary a pattern is, the higher
value of Neighbors Entropy it has. The selected patterns are depicted as filled
circles against open ones.
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836 H. Shin and S. Cho

Figure 9: Performance comparison over hyperparameter variation: Continuous
XOR problem.

a performance comparable to that of ALL by adjusting the value of the
hyper-parameters. Now we compare SEL and RAN from Figure 9b. We
used the same number of random samples as that of the patterns selected
by NPPS. Therefore, there is no difference in the size of training set, only
a difference in data distribution. When compared with SEL, RAN is less
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Neighborhood Property–Based Pattern Selection for SVMs 837

Table 3: Best Result Comparison: ALL vs. RAN vs. SEL.

Continuous XOR Sine Function

ALL RAN SEL ALL RAN SEL
(C, σ ) (10, 0.5) (100, 1) (100, 0.25) (10, 0.5) (0.1, 0.25) (10, 0.5)

Execution time
(sec)

454.83 3.02 3.85 267.76 8.97 8.79

Number of
training
patterns

600 180 180 500 264 264

Number of
support
vectors

167 68 84 250 129 136

Test error (%) 9.67 12.33 9.67 13.33 16.34 12.67
McNemar’s

test
(p-value)

— 0.08 1.00 — 0.12 0.89

sensitive to hyperparameter variation because the patterns are distributed
all over the region. However, note that RAN never performs as well as ALL
since random sampling inevitably misses many patterns of importance to
SVM training. See the best result of RAN in Table 3. Figure 10 shows similar
results for the sine function problem.

Table 3 summarizes the best results of ALL, SEL, and RAN for both
problems. First, compared with the training time of ALL, that of SEL is
little more than trivial because of the reduced size of training set. For both
artificial problems, a standard QP solver, Gunn’s SVM MATLAB toolbox,
was used. Considering that model selection always involves multiple trials,
an individual’s reduction in training time can amount to a huge savings of
time. Second, compared with RAN, SEL achieved an accuracy on a similar
level to the best model of ALL while RAN could not. To show that there
was no significant difference between ALL and SEL, we conducted the
McNemar’s test (Dietterich, 1998). The p-values between ALL and RAN,
and also between ALL and SEL, are presented in the last row of Table 3. In
principle, the McNemar’s test determines whether classifier A is better than
classifier B. A p-value of zero indicates a significant difference between A
and B, and a value of one indicates no significant difference. Although the
p-value between ALL and RAN is not less than 5% in each problem, one
can still compare its degree of difference from the p-value between ALL and
SEL in statistical terms.

Figure 11 visualizes the experimental results of Table 3 on both problems.
The subfigures, 11.1 to 11.3, indicate the results of ALL, RAN, and SEL in
order. The decision boundary is depicted as a solid line and the margin as
a dotted line. Support vectors are outlined. The decision boundary of ALL
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838 H. Shin and S. Cho

Figure 10: Performance comparison over hyperparameter variation: sine func-
tion problem.

looks more alike to that of SEL than to that of RAN. That explains why SEL
produced similar results to ALL.

5.2 Benchmarking Data Sets. Table 4 presents the summary of the
comparison results on various real-world benchmarking data sets (MNIST,
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Neighborhood Property–Based Pattern Selection for SVMs 839

1.a. Continuous XOR: ALL 1.b. Sine Function: ALL

2.a. Continuous XOR: RAN 2.b. Sine Function: RAN

3.a. Continuous XOR: SEL 3.b. Sine Function: SEL

Figure 11: Patterns and SVM decision boundaries. A decision boundary is de-
picted as a solid line and the margins as the dotted lines. Support vectors are
outlined. The decision boundary of ALL looks more alike to that of SEL than to
that of RAN. This explains why SEL performed similar to ALL.
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842 H. Shin and S. Cho

1998; UCI, 1995), including the artificial data sets in the previous section.
Again, SEL is compared with ALL and RAN, and another method is added
as a competitor, SVM-KM (Almeida et al., 2000), which is a preprocessing
method that reduces the training set based on k-means clustering algorithm.

The hyperparameters of SVM were chosen based on the best results
using validation: C , σ , and p, indicate the misclassification tolerance, the
width of RBF kernel, and the order of polynomial kernel, respectively. The
parameter of SEL (NPPS), the number of neighbors k, was determined by
the procedure in section 4 and appendix B (see also Shin & Cho, 2003b). And
the parameter of SVM-KM, the number of clusters k, was set to 10% of the
number of training patterns as recommended in Almeida et al. (2000). For
the MNIST (1988) data set, we chose three binary classification problems;
they are known as most difficult due to the similar shapes of the digits, for
instance, the digit 3 looks similar to the digit 8. Most of the experiments
were run on Pentium 4 with 1.9 GHz 512 RAM, whereas Pentium 4 with
3.0 GHz 1024 RAM for the MNIST problems. A standard QP solver lacks
adequate memory capacity to handle the real-world data sets, so we chose
an iterative SVM solver, OSU SVM Classifier Toolbox (Kernel Machines
Organization, n.d.), after brief comparison about scalability with another
candidate RSVM (Lee & Mangasarian, 2001). (Refer to appendix C for a
comparison of the OSU SVM Classifier with RSVM.)

In Table 4, N/A denotes results that are not available. For ease of com-
parison, the computational time, preprocessing or SVM training, is shown
as a ratio to the SVM training time of ALL. The best two results are rep-
resented as boldface in the test error rate. Similarly, the statistically most
similar result with ALL is represented in boldface type in McNemar’s p-
value. The results show that the preprocessing by either SEL or SVM-KM is
of great benefit to SVM training in reducing the training time. Particularly,
if multiple runnings of SVM are required, one can take the benefit as many
times as required. However, SVM-KM took longer than SEL, and, worse, it
ran out of memory in large-sized problems. Also note that the pairwise test
shows that SEL is more similar to ALL than any other method.

5.3 Real-World Marketing Data Set. The proposed algorithm was also
applied to a marketing data set from (the Direct Marketing Association,
n.d.). The data set DMEF4 has been used in other research (Ha, Cho, &
MacLachlan, 2005; Malthouse, 2001, 2002). It is concerned with an upscale
gift business that mails general or specialized catalogs to customers. The
task predicts a customer will respond to the offering during the test period,
September 1992 to December 1992. A customer who received the catalog
and buys the product is labeled +1; otherwise, he or she is labeled −1. The
training set is given based on the period December 1971 to June 1992. There
are 101,532 patterns in the data set, each representing the purchase history
information of a customer. We derived 17 input variables out of 91 original
ones just as in Ha et al. (2005) and Malthouse (2001).
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Neighborhood Property–Based Pattern Selection for SVMs 843

To show the effectiveness of SEL, we compared it with seven RANs
because random sampling has most commonly been employed when
researchers in this field attempt to reduce the size of the training set.
Table 5 shows the models: RAN∗ denotes an SVM trained with random
samples, where ∗ indicates the ratio of random samples drawn with-
out replacement. Each model was trained and evaluated by using five-
fold cross-validation. The hyperparameters of SVM were determined from
(C, σ ) = {0.1, 1, 10, 100, 1000} × {0.25, 0.5, 1, 2, 3}. The number of neighbors
(k) for SEL was set to 4. The OSU SVM Classifier was used as an SVM solver
(Kernel Machines Organization, n.d.). Typically, a DMEF data set (Direct
Marketing Association, n.d.) has a severe class imbalance problem because
the response rate for the retailer’s offer is very low: 9.4% for DMEF4. In that
case, an ordinary accuracy measure tends to mislead us about the results by
giving more weight to the heavily represented class. Thus, we used another
accuracy measure, Balanced Correct-classification Rate (BCR), defined as

Balanced Correct-classification Rate (BCR) =
(

m11

m1

)
·
(

m22

m2

)
,

where mi denotes the size of class i and mii is the number of patterns
correctly classified into class i . Now the performance measure is balanced
between two different class sizes.

Figure 12 shows the BCRs of the eight SVM models, and Table 6 presents
the details. More patterns result in higher BCR among RAN∗’s. However,
the training time also increases proportionally to the number of training
patterns, with the peak of 4820 sec for RAN100. SEL takes only 68 sec, and
129 sec if the NPPS running time is included. Note that one should per-
form SVM training several times to find a set of optimal hyperparameters,
but only once for NPPS ahead of the whole procedure of training. In the
last column of the table, the p-value of McNemar’s test is listed when SEL
is compared with an individual RAN∗. There is a statistically significant
difference between SEL and RAN up to RAN60 in accuracy, but no differ-
ence between SEL and RAN80 or RAN100. Overall, SEL achieves almost
the same accuracy as RAN80 or RAN100 only with the number of training
patterns comparable to RAN10 or RAN20.

6 Conclusions and Discussion

In this letter, we introduced an informative sampling method for the SVM
classification task. By preselecting the patterns near the decision boundary,
one can relieve the computational burden during SVM training. In the ex-
periments, we compared the performance of the selected pattern set (SEL)
by NPPS with that of a random sample set (RAN) and that of the orig-
inal training set (ALL). We also compared the proposed method with a
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Neighborhood Property–Based Pattern Selection for SVMs 845

Figure 12: Balanced Correct-classification Rate (BCR): RAN∗ is depicted as a
filled circle, and SEL is represented as a dotted reference line.

Table 6: Empirical Result for a Real-World Marketing Data Set, DMEF4

Number of
Training
Patterns

Number of
Support
Vectors

Training
Time (sec)

Correct Rate,
BCR (%)

McNemar’s
Test (p-value)

RAN05 4060 1975 13.72 49.49 0.00
RAN10 8121 4194 56.67 56.17 0.00
RAN20 16,244 7463 149.42 58.05 0.00
RAN40 32,490 14,967 652.11 61.02 0.04
RAN60 48,734 22,193 1622.06 63.86 0.08
RAN80 64,980 28,968 2906.97 64.92 0.64
RAN100 81,226 35,529 4820.06 65.17 0.87
SEL 8871 6624 68.29 64.92 –

competing method, SVM-KM (Almeida et al., 2000). Through the compar-
ison of synthetic and real-world problems, we empirically validated the
efficiency of the proposed algorithm. SEL achieved an accuracy similar to
that of ALL, while the computational cost was still similar to that of RAN
with 10% or 20% of the samples. When compared with SVM-KM, SEL
achieved better computational efficiency.

Here, we would like to address some future work. First, SVM solves
a multiclass problem by a divide-and-combine strategy, which divides the
multiclass problem into several binary subproblems (e.g., one-versus-others
or one-versus-one) and then combines the outputs. This has led to the ap-
plication of NPPS to binary class problems. However, NPPS can readily be
extended to multiclass problems without major correction. Second, NPPS
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846 H. Shin and S. Cho

can also be utilized to reduce the lengthy training time of neural network
classifiers. But it is necessary to add extra correct patterns to the selected
pattern set to enhance the overlap region near the decision boundary (Choi,
& Rockett, 2002; Hara & Nakayama, 2000). The rationale is that overlap pat-
terns located on the “wrong” side of the decision boundary would lengthen
the MLP training time. The derivatives of the backpropagated errors will
be very small when evaluated at those patterns since they are grouped in
a narrow region on either side of the decision boundary. By adding extra
correct patterns, however, the network training will converge faster. In the
meantime, the idea of adding some randomly selected patterns to SEL may
also relieve the higher sensitivity of SEL to hyperparameter variation (see
Figure 9). If the high sensitivity is caused by “narrow” distribution of the
selected patterns, it can be relaxed by some random patterns from “over-
all” input space. But the mixing ratio of the patterns from SEL and from
RAN requires further study. Third, the current version of NPPS works for
classification problems only, and thus is not applicable to regression prob-
lems. A straightforward idea for regression would be to use the mean (µ)
and variance (
) of k nearest neighbors’ outputs. A pattern having a small
value of 
 can be replaced by µ of its neighbors, including itself. That is,
k + 1 patterns can be replaced by one pattern. On the contrary, a pattern
having a large value of 
 can be totally eliminated since in a regression
problem, the patterns located away from major group, such as outliers,
are less important to learning. But its neighbors should be used to explore
the next pattern. Similar research based on ensemble neural network was
conducted by Shin and Cho (2001). Fourth, one of interesting future direc-
tions is the effort to extend NPPS for data with concept drift (Aha, Kibler,
& Albert, 1991; Bartlett, Ben-David, & Kulkarni, 2000; Helmbold & Long,
1994; Klinkenberg, 2004; Pratt & Tschapek, 2003; Stanley, 2003; Widmer &
Kubat, 1996). In concept drift, the decision boundary changes as data arrive
in the form of a stream. A naive approach would be to employ a moving
window over the data stream and then run NPPS repeatedly. For better
results, NPPS should be substantially modified and rigorously tested.

Appendix A: Empirical Complexity Analysis

We empirically show that NPPS runs in approximately vM, where M is
the number of training patterns and v is the number of overlap patterns
(a full theoretical analysis is available in Shin & Cho, 2003a). A total of
M patterns, half from each class, were randomly generated from a pair of
two-dimensional uniform distributions:

C1 =
{

�x | U
([ −1

(0 − 1
2

v
M )

]
< �x <

[
1

(1 − 1
2

v
M )

])}
,

C2 =
{

�x | U
([ −1

(−1 + 1
2

v
M )

]
< �x <

[
1

(0 + 1
2

v
M )

])}
.
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Neighborhood Property–Based Pattern Selection for SVMs 847

a. v = 0.3M

b. v = 0.5M

c. v = 0.7M

Figure 13: Overlap of two uniform distributions. The dark gray area is the
overlap region that contains v patterns. The number of overlap patterns, v, is
set to every decile of training set size, M. (a, b, c) v = 0.3M, v = 0.5M, and
v = 0.7M, respectively.

We set v to every decile of M : v = 0, 0.1M, 0.2M, . . . , 0.9M, M. Figure 13
shows the distributions of v = 0.3M, v = 0.5M, and v = 0.7M. The larger
values of v correspond to more overlap patterns. We set out to see how
the computation time of NPPS works with the changing value of v—in
particular, whether the computation time is linearly proportional to v as
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848 H. Shin and S. Cho

a. The number of selected patterns (%)

b. Computation time

Figure 14: Empirical complexity analysis: NPPS with increasing number of
overlap patterns v.
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Neighborhood Property–Based Pattern Selection for SVMs 849

a. Pima Indians Diabetes (k∗ = 4)

b. Wisconsin Breast Cancer (k∗ = 6)

Figure 15: SVM test error rates. The error rate is stabilized at about 30.0% for
Pima Indian Diabetes when k ≥ 4 and at about 6.7% for Wisconsin Breast Cancer
when k ≥ 6.
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850 H. Shin and S. Cho

Table 7: Empirical Comparison on Different SVM Solvers.

Number of
Training
Patterns

Time
Ratio:

Training

Test
Error

Rate (%)
McNemar’s

p-Value

Continuous XOR: 1000 test patterns
OSU-SVM C = 10, σ = 0.5 600 1.00 9.67 –
RSVM C = 10, σ = 0.5 600 1.20 9.97 0.79

Sine function: 1000 test patterns
OSU-SVM C = 10, σ = 0.50 500 1.00 13.33 –
RSVM C = 100, σ = 0.25 500 0.31 13.46 0.85

4 × 4 checkerboard: 10,000 test patterns
OSU-SVM C = 20, σ = 0.25 1000 1.00 4.03 –
RSVM C = 100, σ = 0.25 1000 1.87 3.88 0.00

Pima Indian Diabetes: 153 test patterns (5-cv out of 768 patterns)
OSU-SVM C = 100, p = 2 615 1.00 29.90 –
RSVM C = 10, p = 1 615 0.10 29.64 0.72

Wisconsin Breast Cancer: 136 test patterns (5-cv out of 683 patterns)
OSU-SVM C = 5, p = 3 546 1.00 6.80 –
RSVM C = 10, p = 3 546 1.65 8.02 0.45

MNIST: 3–8: 1984 test patterns
OSU-SVM C = 10, p = 5 11982 1.00 0.50 –
RSVM 11982 N/A N/A N/A

MNIST: 6–8: 1932 test patterns
OSU-SVM C = 10, p = 5 11769 1.00 0.25 –
RSVM 11769 N/A N/A N/A

MNIST: 9–8: 1983 test patterns
OSU-SVM C = 10, p = 5 11800 1.00 0.41 –
RSVM 11800 N/A N/A N/A

mentioned. Figure 14a shows the number of selected patterns through eval-
uation when v grows from 0 up to M = 10, 000. In Figure 14b, one can clearly
see that the computation time is proportional to v.

Appendix B: Experiments on the Number of Neighbors

Based on the procedure presented in Figure 7, we briefly present exper-
iments on Pima Indian Diabetes and Wisconsin Breast Cancer. Accord-
ing to the procedure, the lower bounds of v were estimated as 393 and
108 from the training error rates, Perror = 32.0% and Perror = 9.9%, respec-
tively. These led to k∗ = 4 in Pima Indian Diabetes and k∗ = 6 in Wisconsin
Breast Cancer. (The values of kmin were also 4 and 6, respectively.) Figure 15

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/19/3/816/816850/neco.2007.19.3.816.pdf by C
ATH

O
LIC

 U
N

IV O
F KO

R
EA user on 08 M

ay 2025



Neighborhood Property–Based Pattern Selection for SVMs 851

shows that the test error rate stabilizes at about 30.0% for Pima Indian Di-
abetes when k ≥ 4, and at about 6.7% for Wisconsin Breast Cancer when
k ≥ 6.

Appendix C: Empirical Comparison on SVM Solvers

We provide a short comparison between OSU-SVM (OSU SVM Classifier,
Kernel Machines Organization) and RSVM (Lee & Mangasarian, 2001),
which are known as the fastest SVM learning algorithms. All of the exper-
imental settings were as identified in section 5.2. The parameter of RSVM,
the random sampling ratio, was set to 5% to 10% of training patterns accord-
ing to Lee and Mangasarian. In Table 7, the computational time of RSVM is
shown as a ratio to the SVM training time of OSU-SVM. The results show
that both of the algorithms are almost similar in accuracy. Also in training
time, it is hard to tell which is superior to the other. However, RSVM was
not available for the MNIST (1998) problems. It failed to load the kernel ma-
trix on the memory (note that RSVM is not an iterative solver). Therefore,
we chose to use OSU-SVM as a base learner in our experiment because it is
relatively more scalable and also parameter free.
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