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A B S T R A C T   

To solve the label sparsity problem, domain adaptation has been well-established, suggesting various methods 
such as finding a common feature space of different domains using projection matrices or neural networks. 
Despite recent advances, domain adaptation is still limited and is not yet practical. The most pronouncing 
problem is that the existing approaches assume source-target relationship between domains, which implies one 
domain supplies label information to another domain. However, the amount of label is only marginal in real- 
world domains, so it is unrealistic to find source domains having sufficient labels. Motivated by this, we pro
pose a method that allows domains to mutually share label information. The proposed method finds a projection 
matrix that matches the respective distributions of different domains, preserves their respective geometries, and 
aligns their respective class boundaries. The experiments on benchmark datasets show that the proposed method 
outperforms relevant baselines. In particular, the results on varying proportions of labels present that the fewer 
labels the better improvement.   

1. Introduction 

Domain adaptation is a representative strategy solving the label 
sparsity problem [1–4]. For the target domain sparsely labeled, a related 
domain containing many labels is used as the source. This allows the 
target domain to improve the performance of classification or regression 
from the information provided in the label [5–7]. In a word, domain 
adaptation is the process by which less-labeled domains resemble more 
labeled domains in order to borrow label information. 

However, the two domains cannot transmit information directly 
because their data properties are different. A transformation is required 
to view the two domains as one [8,9]. The objective of domain adap
tation is generally set to search a common feature space by a neural 
network or projection matrix. There have been interesting studies for 
respective approaches. In [10,11], the adversarial learning with neural 
networks is employed to perform domain adaptation. The method con
sists of the feature extractor and the classifier: the former trains domain 
labels (source or target), and the latter trains class labels. The feature 
extractor includes reverse gradient layers which make different domain 
samples indistinguishable [12]. The methods yield good performance. In 
contrast, the extracted feature space hardly represents the original 

properties of each domain such as distributional or geometrical traits. As 
a result, it creates a feature space in which different domain samples are 
mixed and arranged only for classification performance, but intrinsic 
domain specific properties are lost. This is due to the nonlinear 
embedding of neural networks and the resulting inexplicability. 

On the other hand, approaches using projection matrices preserve 
the properties of original domain. For this, the objective function pur
sues to keep distributional or geometrical traits. In transfer component 
analysis (TCA) [13]—the well-known method, the objective function 
seeks for a set of projectors to minimize the maximum mean discrepancy 
(MMD) [14–16] between the source and target sample distributions. On 
the other hand, semi-supervised domain adaptation (SSDA) [17] per
forms manifold regularization based on TCA by integrating unlabeled 
data with similarity constraints into the objective function. In [18], 
manifold embedded distribution alignment (MEDA) was suggested 
which learns a domain-invariant classifier by minimizing the structural 
risk in manifold and performing the dynamic distribution alignment 
simultaneously. As such, when domain adaptation is performed with the 
projection matrix, it is possible to derive common representation in a 
feature space while preserving distributional and geometrical 
properties. 
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In recent, the studies on domain adaptation with the projection 
matrix have proposed various methods to match not only feature 
properties of data but also class information of samples. Li et al. pro
posed domain invariant and class discriminative feature learning for 
visual domain adaptation (DICD), which learns a latent feature space 
while reducing the domain difference by jointly matching the marginal 
and class-conditional distributions [19]. Similarly, Zhang et al. proposed 
joint geometrical and statistical alignment for visual domain adaptation 
(JGSA) in which the marginal and conditional distribution divergences 
between domains and the projections for each domain are constrained to 
reduce the domain shift statistically and geometrically, respectively 
[20]. Likewise, Zhou et al. proposed label-guided heterogeneous domain 
adaptation (LHDA) that matches the marginal and conditional distri
butions of different data with the adaptation of the combination of 
labeled data to the unlabeled data [21]. These methods have in common 
to iteratively perform pseudo-labeling of samples in the target domain 
using the labels in the source domain to obtain converged prediction 
results. By generating artificial labels, those methods obtain more so
phisticated results. 

Despite these successes, domain adaptation in real-world scenarios is 
still difficult for a couple of reasons. First, labels are lacking in most 
domains. This is more evident in recent data, where both quantity and 
size are rapidly increasing, but label annotation is time consuming and 
expensive. In this situation, it is unrealistic to assume the existence of a 
source domain full of labeled data as in previous studies. It would be 
desirable for the adaptation method not to assume a source-target 
relationship between domains. Second, the amount of label is only 
marginal in both domains. Fewer labels make sharing information less 
efficient across domains. It would be nice to supplement additional la
bels with labels predicted with high confidence, i.e., pseudo-labels, by a 
classifier. 

Motivated by the limitations, we propose a domain adaptation 
method called mutual domain adaptation (MDA) based on using a 
projection matrix. As the name suggests, this method does not assume a 
source-target relationship between domains. The projection matrix is 
regularized to preserve the distributional and geometric properties of 
the original domain. Also, the proposed method includes a method for 
pseudo-labeling to compensate for deficiency in the label. Labeled and 
pseudo-labeled samples in one domain are only paired with those 
labeled (and pseudo-labeled) in the other domain. This strategy provides 
the projection matrix to align the class boundaries of the two domains, 
preventing them from intersecting or awkwardly located. In summary, 
MDA allows two different domains to share label information with each 
other by matching respective their distributions, preserving their 
respective geometries, and aligning their respective class boundaries. 

In the next section, we sketch the main ideas of the proposed method, 
MDA: distribution matching, manifold preserving, and consistency mapping. 
And accordingly, each property is mathematically implemented as a 
term of a single objective function. The experimental section shows the 
performance of MDA on benchmark datasets with varying proportions of 
labeled data. Experiments on the ablation of three properties are also 
presented. Section 4 concludes the paper with remarks on contributions 
and limitations of MDA. 

2. Proposed method 

2.1. Synopsis 

To share label information between domains, it is a priority to find a 
common feature space because domains have different dimensions as 
well as feature properties. Let Z be the common feature space of domain 
A and domain B . Here are some desirable premises while projecting 
two domains to Z . First, the projection adjusts the underlying distri
bution in domain A so that it maps analogously to the distribution in 
domain B , and vice versa. Second, the projection should be carefully 
conducted not to disrupt the inherent manifold structure of each 

domain. That is, the neighbors in the original domain must be neighbors 
in Z , maintaining topological order. However, the premises above may 
distort the shape of distribution or change the orientation of class 
boundary. One of the worst-case scenarios is that the class boundaries of 
two domains are crossed or awkwardly deployed in Z . To alleviate this, 
third, we restrict the labeled data to be paired only with data labeled in 
the opposite domain. Pairing labeled data by class across domains can 
have the effect of aligning class boundaries in projected space. However, 
having only a few labels blurs the class boundary. To make clearer class 
boundary, we can use pseudo-labeling prior to pairing, that is, the labels 
predicted by a particular classifier with high confidence. Then, the in
formation between domains is then passed to other domains through 
class-by-class pairing of labeled samples with labeled samples. The 
above premise is named in the order of distribution matching, manifold 
preservation, and consistency mapping. 

Fig. 1 depicts the process how the MDA implements the premises. For 
convenience of manifold representation and label propagation between 
domains, domain data sets are represented as graphs. Fig. 1(a) and (b) 
show the shape, distribution, and manifold of domain A and domain B , 
respectively. Outlined circles or triangles indicate labeled samples and 
blue or red indicates classes. If no premise is made, data from both do
mains will be messed up in the common space Z . Fig. 1(c) shows this 
case which depicts an ill-posed feature space. However, if the first 
premise, distribution matching, is applied, the difference between the two 
domains is reduced by matching the centers of distributions. The effect is 
shown in Fig. 1(d). This approach is known as MMD, which minimizes 
gaps between means of different distributions [15]. However, since it 
does not consider the topology between samples, there is no guarantee 
that the relationships between samples in the original domain A or B 

will still holds in Z . To complement the limitation, the MDA employs 
the graph Laplacian and implements the premise of manifold preserva
tion. And Fig. 1(e) depicts that each manifold in domain A and B still 
holds even in the reshaped distribution in Z . The grey solid edges 
indicate the relationship between samples. Fig. 1(f) shows consistency 
mapping where the red and blue thick solid lines represent pairs between 
domains. Consistency mapping is additionally described in Fig. 2. The 
figure illustrates how class-wise pairing between labeled samples 
reasonably align class boundaries. 

2.2. Formulation and optimization 

Here we provide the mathematical formulation to find the common 
feature space Z satisfying the three premises, by finding projection 
matrix P from domain A and domain B . 

Distribution matching: To minimizing the gap between two 
domain distributions in the projected feature space, the MMD is adopted 
[9]. It explicitly reduces their marginal distribution difference by the 
term below: 

‖
1

nA

∑nA

i=1
PT

A XA (i) −
1

nB

∑nB

j=1
PT

B XB (j) ‖
2
2 (1)  

where nA , dA , XA ∈ RdA ×nA , and PA : RdA →Rk denote the number of 
data, dimension, data matrix, and the projection matrix of domain A . 
They are similarly denoted in domain B . Instead of finding each pro
jection, we can simplify the representation by concatenating data 

matrices as X =

[
XA 0
0 XB

]

∈ Rd×n where d = dA + dB and n = nA +

nB , and also the projection matrices as P =

[
PA 0
0 PB

]

∈ Rd×k where k 

is the dimension of feature space Z . (1) can be rephrased as a form of 
trace 

tr
(
PTXD XTP

)
(2)  
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by defining D =

⎡

⎢
⎢
⎣

1nA ×nA

nA
2 −

1nA ×nB

nA nB

−
1nB ×nA

nB nA

1nB ×nB

nB
2

⎤

⎥
⎥
⎦ ∈ Rn×n. 

Manifold preserving: To preserve manifolds, the smoothness of 
each domain is regularized and summed as 
∑

i,j
WA (i,j)

(
PT

A XA (i) − PT
A XA (j)

)2
+
∑

i,j
WB (i,j)

(
PT

B XB (i) − PT
B XB (j)

)2
(3)  

where WA is the similarity matrix of domain A , and WA (i,j) is the simi
larity between A (i) and A (j) calculated by the Gaussian function [22, 
23], exp( − |XA (i) − XA (j) |

2
/σ2). That of domain B is similarly defined. 

(3) can also be simplified as 

tr
(
PTXM XTP

)
(4)  

by introducing the graph Laplacian [22], M =

[
M A 0

0 M B

]

where 

M A = diag(WA ) − WA and M B = diag(WB ) − WB . 
Consistency mapping: To be consistent of label classes, samples 

with labels are paired by each class. The class-wise pairing between 
labeled samples is performed across both domains and consists of all 
combinations of samples belonging to the same class. This pairing can be 
done by defining the indicator matrix E where E(i,j) is 1 if the labeled 
samples in the different domains A (i) and B (j) belong to the same class, 
0 otherwise. 

Fig. 1. Mutual domain adaptation. MDA allows two different domains to share label information with each other by matching respective their distributions (dis
tribution matching), preserving their respective geometries (manifold preserving), and aligning their respective class boundaries (consistency mapping). 

Fig. 2. The effect of consistency mapping. (a) and (b) represent the distributions in the feature space mapped from domains A and B , respectively. The dotted lines 
indicate the class boundaries, the filled circles or triangles stand for labeled samples, otherwise unlabeled samples. (c) A common feature space that overlaps the two 
domains as they are, shows that two distributions are well matched and that each manifold is also well preserved. However, the class boundaries are misaligned, 
which can lead to confusion in determining class boundaries after domain adaptation. Meanwhile, (d) shows the mapping result according to ‘class consistency’: 
labeled samples are paired by class, for instance, ①-⑥ and ②-④. This leads to better alignment of class boundaries of domains A and B , and thus better domain 
adaptation can be expected. 
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∑

i,j
E(i,j)

(
PT

A XA (i) − PT
B XB (j)

)2
(5) 

Also, (5) can be rephrased as 

tr
(
PTXC XTP

)
(6)  

where C = diag(E) − E. (6) stands for the L2-norm, which means the 
distance in the feature space between class-wisely paired labeled sam
ples between domains. In the proposed method, to enhance the effec
tiveness of consistency mapping, pseudo-labeling is applied prior to 
projection from the original domain into feature space. The detail of 
pseudo-labeling is described in Appendix S1. 

Optimization: The objective function is derived by linearly 
combining above equations, 

argmin.
P

γD tr
(
PTXD XTP

)
+ γM tr

(
PTXM XTP

)
+ γC tr

(
PTXC XTP

)

+ tr
(
PTP

)
(7)  

s.t. PTXHXTP = I 
The last term, tr(PTP) regularizes the complexity, and the constraints 

plays role of centering data in the feature space where H = I − 1
n 1. The 

γD , γM , and γC are combining coefficients (γ∗ ≥ 0). Note that (7) is 
quadratic, and thus the problem is convex [24]. By denoting Θ be the 
Lagrange multiplier and defining Ψ = γD D + γM M + γC C , the 
Lagrangian L of (7) is derived as follows: 

L = tr
(
PT( XΨXT + I

)
P
)
+ tr

( (
I − PTXHXTP

)
Θ
)
. (8) 

The solution can be obtained by ∂L/∂P = 0, 
(
XΨXT + I

)
P = XHXTPΘ. (9) 

By defining S = (XHXT)
− 1
(XΨXT + I), it boils down to 

SP = PΘ (10)  

which is the eigen-decomposition problem for S where Θ =

diag(θ1,⋯, θk) contains the k largest eigenvalues and P = [p1,⋯, pk]

consists of the corresponding eigenvectors [25,26]. By solving (10), the 
optimal solution P of the can be simply obtained. 

2.3. Mutual domain adaptation 

Mutual domain adaptation is performed by bridging two domains in 
feature space. By means of (7) and (10), the samples of domain A and 
domain B are projected to Z via P. Now, the two domains share a 
feature space, and are also ready to share label information. Graph- 
based SSL is employed for this. In Z , a giant graph GZ = (VZ ,WZ ) is 
constructed, where VZ is the node set of n(= nA + nB ) cardinality and 
WZ = {wij} is the similarity matrix of n samples calculated in the 
common feature space Z of dimension k. The Gaussian function [22,23] 
is used to calculate the wij with the transformed feature set Z = PTX. 

wij =

⎧
⎪⎪⎨

⎪⎪⎩

exp

(
−
⃒
⃒Zi − Zj

⃒
⃒2

σ2

)

if i ∼ j (i and j are k − nearest neighbors)

0 otherwise 

Note that there are no more domain boundaries. That is, in Z , a 
sample from domain A can be linked with a sample not only from its 
own domain but also from domain B , as long as they are similar. 

By denoting the label set as y =

(y1, y2, ⋯, yl, yl+1 = 0, ⋯, yn = 0)T where yi ∈ {− 1,+1} for i = 1,⋯ 
, l and yi = 0 for the rest, the predicted value set defined as f =
(f1, f2, ⋯, fl, fl+1, ⋯, fn)T where 0 ≤ fi ≤ 1 can be obtained by solving 
the quadratic objective function 

min
f

(f − y)T
(f − y) + μf TLZ f  

where LZ is the graph Laplacian, defined as LZ = diag(WZ ) − WZ , and 
μ is a user-specified parameter which trades off the loss(the first term) 
and the smoothness(the second term). The solution is obtained as a 
closed form as below. The graph-based SSL has been well-established, 
and so further details can be found in [27,28]. 

f = (I + μLZ )
− 1y 

As a result, all nodes in domain A and B make label predictions by 
sharing information through the gigantic graph GZ , which is mutually 
beneficial to both domains. The overall procedure for MDA is summa
rized in Algorithm 1. 

3. Experimental results 

The experimental results on the proposed method are described in 
this section. We present various empirical results for feature space 
alignment (Section 3.2), mutual domain adaptation (Section 3.3) and 
the ablation study (Section 3.4) on benchmark datasets. 

3.1. Datasets 

The proposed method was applied to various benchmark datasets. 
There are a total of five datasets, three text datasets (Amazon, Email, 
News) and two image datasets (Digit, Object). The summary and details 
for each are described in the Table 1 and below. 

Amazon dataset is a collection of product reviews from Amazon.com 
[29]. There are four domains namely books, DVDs, electronics, and 
kitchen appliances, and each domain contains 2000 labeled reviews 
encoded in 400-dimensional feature vectors of unigrams and bigrams. 
One half of reviews are ranked 4 or 5 stars (labeled as +1) and the other 
half of them are ranked up to 3 stars (labeled as -1). 

News dataset is a collection of news documents from 20Newsgroup 
[30]. There are 18,774 documents encoded in 26,214-dimensional 
bag-of-words vectors with 6 top categories and 20 subcategories in a 
hierarchical structure [31,32]. In our experiments, we recategorized 
newsgroups of 3 main categories and 12 subcategories. The task was to 
classify main categories (comp, rec, and sci). The details of News data are 
shown in Table 2 below. 

Email dataset is a collection of personal emails in 2006 ECML-PKDD 
discovery challenge [33]. There are three inboxes (each has 2,500 
emails) by different three users. Emails are encoded in 10,588-dimen
sional bag-of-words vectors, and one-half of them are non-spam 
(labeled as +1) and the other half of them are spam (labeled as -1) [34]. 

Algorithm 1 
Mutual Domain Adaptation.  

Input: Datasets for each domain {X∗ , y∗} (∗: A , B ) 
Output: Label prediction f on the common feature space 
(1) Pseudo-labeling for each domain 
Construct graph G∗ = (V∗ ,W∗)

Predict labels f∗ = (I + μL∗)
− 1y∗

Select samples as pseudo-labels with |2f∗ − 1| ≥ δ 
(2) Finding an optimal projection matrix 

Concatenate data matrices as X =

[
XA 0
0 XB

]

Derive the objective function by (7) 
Solve the Lagrangian L = tr(PT(XΨXT + I)P)+ tr((I − PTXHXTP)Θ)

Eigen-decompose the matrix (XHXT)
− 1

(XΨXT +I) by (10) 
Select k leading eigenvectors and construct the projection matrix P 
(3) Mutual label propagation 
Transform the original data to Z = XP 
Construct graph GZ = (VZ ,WZ ) for mutual domains 
Predict labels f = (I + μLZ )

− 1y 
return Label prediction f on the common feature space  

S. Park et al.                                                                                                                                                                                                                                     
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In our experiments, each inbox was set as a domain with 2,000 emails. 
Digit dataset is a collection of digit images, and it consists of MNIST 

[35], USPS [36], and synthetic numbers (SynNumber) [37]. MNIST is a 
handwritten digit data containing 70,000 of 28 × 28 pixels grayscale 
images. USPS is automatically scanned digit data containing 9298 of 16 
× 16 pixels grayscale images. SynNumber data is synthetically gener
ated digits of English digits containing 12,000 of 32 × 32 pixels images. 
In our experiments, SynNumber data was transformed into grayscale 
images, and every data was set as a domain with 5000 images. 

Object dataset is a collection of various object image data including 
CIFAR10 [38] and STL10 [39]. CIFAR10 data is 60,000 images of 32 ×
32 pixels with 10 classes. STL10 data is 113,000 images of 96 × 96 pixels 
with 10 classes. In our experiments, the task was to classify the 9 com
mon classes: airplane, bird, automobile (or car), cat, deer, dog, horse, ship, 
and truck, from chosen 5400 and 2700 images (600 and 300 per class) of 
CIFAR10 and STL10, respectively. 

3.2. Results for feature space alignment 

In this subsection, we describe results for domain adaptation 
depending on alignment of feature space. The effect of adaptation on 
features was validated on the Amazon data, and Fig. 3 depicts feature 
spaces between the books and DVDs. There two cases with t-SNE [40,41] 

visualizations: the left case when domain adaptation was not performed 
and the right case when our mutual domain adaptation was performed. 
First, mutual domain adaptation seems to make two distributions much 
closer. Also, it could be seen that manifolds of two domains are 
noticeable with the adaptation. Moreover, labeled samples gather and 
lie on the shared manifold by same class. 

Also, in other domains in the Amazon dataset, features got much 
closer through mutual domain adaptation. The closeness between two 
domains was calculated by the Proxy A -distance (PAD) [42]. The 
smaller the value of PAD, the closer the distance between domains, 
indicating that domain adaptation was successfully performed. Fig. 4 
shows the PAD results according to various dimensions of the common 
feature space. In the books panel, the values on the bars represent the 
average PAD for all possible domain pairs with the books. The proposed 
method reduced PAD between domains in all dimensional settings and 
showed that the domain adaptation performed better with lower di
mensions. In the proposed method, even if the feature dimensions of two 
domains are different, they are projected into the common feature space 
of the same dimension. In the k-dimensional space where the two do
mains are projected, the PAD becomes small due to the role of the MMD 
in making the feature distributions of the two domains similar with each 
other. The MMD forces the distance between two distributions to 
decrease even if the value of k is set to the same size as the original 
feature dimension: for example, the PAD decreases for an Amazon 
dataset with 400 dimensions, when k is 400. However, since k is a 
user-specified parameter, further research on how to derive an opti
mized value is needed. Therefore, in the experiments of this paper, the 
results according to various k values are presented in Fig. 4. As the value 
of k gradually decreases from 400 to 100 and 10, the feature dimension 
decreases, so the PAD also decreases. Furthermore, the feature projec
tion into the low-dimensional space indicates that only similar infor
mation remains between the two domains. Although results could be 
good in terms of reducing the difference between domain, but it means 
loss of information, which decrease the discriminative power. The 
detailed experimental results for feature space alignment are reported in 
Table S1 of Appendix. 

3.3. Results for mutual domain adaptation 

In this subsection, we compare the performance of MDA based SSL 
(MDA-SSL), with that of SSL on a single domain (Single SSL). Every node 
in graphs was connected to five nearest neighbors. Edges between nodes 
were calculated by Gaussian function. For Single SSL, the input data 

Table 1 
Summary of benchmark datasets.  

Dataset Domain Type # of data # of 
class 

Amazon Books, DVDs, Electronics, and 
Kitchens. 

Text 8,000 2 

News Newsgroup A, B, C, and D Text 12,000 3 
Email Inbox A, B, and C Text 6,000 2 
Digit MNIST, USPS, and SynNumber Image 15,000 10 
Object CIFAR10 and STL10 Image 8,100 9  

Table 2 
Categories of newsgroups of News dataset.  

Newsgroup Categories 

A comp.graphics rec.autos sci.crypt 
B comp.sys.ibm.pc.hardware rec.motorcycles sci.electronics 
C comp.sys.mac.hardware rec.sport.baseball sci.med 
D comp.windows.x rec.sport.hockey sci.space  

Fig. 3. Results for domain adaptation depending on alignment of feature space.  
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Fig. 4. Results for Proxy A -distances.  

Fig. 5. Individual AUC comparison for Single SSL and MDA-SSL.  
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were original features. For MDA-SSL, the input data were the projected 
features where the number of dimensions varied over {10, 20, 50, 100}. 
Also, our method was performed on all combination of domains in each 
dataset {4C2, 4C2, 3C2, 3C2, 2C2}. Results were obtained with various 
proportions of labels {0.5%, 1%, 2%, 5%, 10%, 20%, 50%} on each 
graph. The parameter μ in SSL, which controls the degree of label 
smoothing, was determined to be the value that yielded the best results 
of each method in the range of {0.01, 0.1, 1, 10, 100} after the valida
tion. The performance was measured by the area under receiving 
operating characteristic curve (AUC), and the entire experiment was 
repeated 100 times for each setting. 

Fig. 5 shows the individual AUC comparison results for each domain 
in Amazon dataset. One point on the scatterplot represents the average 
result of 100 iterations for the experimental setup, and each plot has 84 
points. The diagonal line is a criterion for performance comparison, and 
when a point is located above the line, the vertical axis performs better. 
In all plots in Fig. 5, since most points are located above the diagonal 
line, it can be seen that the four domains complementarily utilized the 
label information for prediction by mutual domain adaptation. In 
addition, in Fig. 5(c) and (d), the electronics and kitchen appliances 
showed the better classification results and stable performance 
compared to other domains. In particular, through mutual domain 
adaptation, those two domains make a significant contribution to 
improving each other’s performance. It can be inferred that this result is 
due to the similarity between domains. Since the electronics and the 
kitchen appliances have in common that they are electronic products in 
a wide range, consumers’ evaluation standards and expression methods 
for products have a similar context. As a result, it may be easier to 
perform domain adaptation on review data for the electronics and the 
kitchen appliances. With these results, mutual domain adaptation shows 
the performance improvement in all domains related to each other. It 
can also be inferred that the more similar the domains, the better the 
proposed method works. 

Fig. 6 presents the details of performance improvement of Amazon 
dataset according to the proportions of labels. The thick dotted and solid 
lines in the plot represent the AUCs of Single SSL and MDA-SSL, 
respectively, and the bars represent the difference in AUC between 
two methods. Experimental results showed that MDA-SSL outperforms 
Single SSL in all proportions of labels with the average improvement rate 
of 16.2%. In particular, the improvement of 0.5% labels was the highest 
with 23.1% in that 43 and 182% higher than the improvement of 5% 
labels (16.1%) and that of 50% labels (8.2%) respectively. This result 
indicates that MDA-SSL improves better with fewer labels. Therefore, 
sparsely labeled domains may be more accurate when they adapt their 
label information mutually. 

In addition, the SSL classification performance of MDA was 
compared with other methods: DICD [19], JGSA [20], and LHDA [21]. 
The overall comparison results are shown in Table 3, and the detailed 
results by each dataset are reported in Table S2 to S6 of Appendix. The 
results indicate that the proposed method generally performs better than 
other methods. In particular, it can be seen that the smaller the pro
portion of labels, the more pronounced the improvement of the pro
posed method. Sometimes the comparison methods perform better when 
there are many labels. It is considered that the pseudo-labeling included 
in the proposed method acted as noisy information for prediction. In 
other words, MDA utilizes pseudo-labeling when there are few labels to 
amplify the effect of consistency mapping to make prediction results 
more accurate, whereas when labels are sufficient, class-consistency 
between labeled nodes occurs more than necessary due to 
pseudo-labeling and is rather will have the opposite effect. Conse
quently, through the proposed method, the classification performance 
can be improved by mutually propagating labels between different do
mains, and the fewer the labels, the more robust the performance 
improvement. 

Here are some remarks on the similarities and differences between 
the proposed method, MDA, and the comparison methods, DICD, JGSA, 

Fig. 6. Performance improvement by proportions of labels.  
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and LHDA. The four methods are similar in that they project different 
domains onto a common feature space and perform similar labeling in 
common to clarify class regions. On the other hand, the main difference 
with MDA is that they distinguish between source and target domains 
and assume that the source domain is fully labeled. However, MDA does 
not require premise. That is, there is no distinction between source and 
target domains. In addition, MDA works when only a few labels are 
given, regardless of whether the labels belong to the source domain or 
the target domain. MDA thus provides more flexibility in designating 
source and target domains and is not limited by the amount of labeled 
data. 

3.4. Ablation study 

In this subsection, we describe results of the ablation study designed 
to figure out the effect of three objectives for mutual domain adaptation: 
distribution matching, manifold preserving, and consistency mapping. Each 
objective is formulated as a term in (7), and for this ablation study, we 
varied the objective function by combinations of those terms. There
after, seven projection matrices were derived by optimization, and same 
classification tasks were performed. Fig. 7 depicts the results of ablation 
study on Amazon dataset. 

At first, the overall trend indicates that performances get better when 
the more terms are added on the objective function. For instance, by 
denoting the objective function as f , the AUCs are max(fD , fM ) < fD +M , 
max (fM , fC ) < fM +C , and max (fD +M , fD +C , fM +C ) < f D +M +C . 
Therefrom, the distribution matching, manifold preserving, and con
sistency mapping are independent and helpful for adapting domains 
mutually. Next, the contribution of consistency mapping C is remark
able. In the case of 0.5% labels in book domain as shown in Fig. 7(a), the 
performance is above 0.6 even when the label information is adapted, 
which is about 15% higher than in fD or fM . The remainder domains also 
show similar patterns. Additionally, with the more sparsely labeled data, 
C has the more significant role. Let us compare the case of 0.5% labels 
(the dotted line at the bottom) and the case of 50% labels. The 

increments to the worst performance are (a) 0.15 and 0.08, (b) 0.18 and 
0.08, (c) 0.24 and 0.07, and (d) 0.30 and 0.08 where the averages of 
these increments are 0.22 with 0.5% labels and 0.08 with 50% labels. As 
a result, for domain adaptation tasks, the mutual connection of label 
information can have a greater discriminative power of features than 
only considering the properties of the original input data. Moreover, it 
could be more powerful when there are more sparsely labeled data. 

Next, the effect of pseudo-labeling was empirically analyzed. We 
compared the SSL classification performance with and without pseudo- 
labeling for f D +M +C , and the results were derived from various pro
portions of labels as in the previous experiments, as shown in Table 4. 
The comparison results in Table 4 represent that the pseudo-labeling 
helps to improve performance when there are few labels, but it is not 
necessary when sufficient labels are given. It can be seen that the 
pseudo-labeling contributes to domain adaptation by generating labels 
when the data are labeled sparsely. The detailed experimental results for 
ablation study are reported in Table S7 of Appendix. 

Furthermore, we compared results with three methods: TCA [9], 
SSDA [17], and MEDA [18]. TCA minimize the MMD between the source 
and target domains, SSDA regularizes manifold with similarity con
straints integrating unlabeled data, and MEDA performs the dynamic 
distribution alignment and minimizes the structural risk in manifold 
together. The results of comparison are shown in Table 5, and they 
indicate that the proposed method outperforms three methods. In 
particular, by comparing results with the proportion of labels, our 
method seems to make features more discriminative in the sparsely 
labeled data. For the 0.5% labeled data, the average AUC of competitive 
methods was about 0.57. On the other hand, we improved 19.2% to 
0.68. Domain adaptation aims to make predictions by adding other 
domain information when there is no label information. Considering 
this, it can be seen that the proposed method meets the purpose of 
domain adaptation. 

4. Conclusion 

Domain adaptation is one of strategies to solve the label sparsity 
problem. The label-sufficient source domain can transfer its information 
to the label-deficient target domain through a common feature space 
where two domains are represented as like one. Although existing 
methods are well-established, in real-world scenarios, most domains 
prefer to be the target because recent data becomes more sparsely 
labeled. In that there are very few sources domain, domain adaptation 
needs to be improved to be realistic. 

In this paper, we presented the realistic domain adaptation method, 
which we refer to as mutual domain adaptation, MDA. The purpose of 
MDA is to search a common feature space of different domains where 
label information can be shared. The projection matrix transforms 
original feature sets and represents on the space. The projected features 
are derived by three objectives: distribution matching, manifold preserving, 
and consistency mapping. The distribution matching minimizes the 
distributional gap between two domains. By applying MMD, two feature 
sets are induced to resemble so that they are seen as to share one dis
tribution. The manifold preserving minimizes the loss of original to
pologies. With the graph Laplacian, samples are smoothed along the 
manifold. The consistency mapping seeks the common feature space 
being consistent between samples by each class. Labeled samples are 
class-wise paired, and the projection matrix aligns the class boundaries. 
To enhance the effectiveness of consistency mapping, pseudo-labeling is 
applied prior to projection from the original domain into feature space. 
By applying semi-supervised learning, only prediction values with high 
confidence are selected as pseudo labels. At last, the three objectives for 
MDA are mathematically defined as an optimization problem, and the 
projection matrix for a common feature space is derived. We validated 
MDA on benchmark datasets with varying the proportion of labels. The 
experimental results show that the proposed method outperforms the 
relevant baselines, indicating the better for the sparser labeled data. 

Table 3 
Performance comparison for SSL classification.  

Dataset Method Proportions of labels 

0.5 % 1 % 2 % 5 % 10 % 20 % 50 % 

Amazon Single 
SSL 

.563 .582 .604 .639 .668 .700 .744 

DICD .639 .671 .711 .740 .764 .793 .837 
JGSA .593 .665 .696 .721 .760 .791 .863 
LHDA .596 .638 .663 .691 .727 .749 .761 
MDA-SSL .693 .715 .729 .742 .762 .784 .805 

News Single 
SSL 

.747 .792 .837 .891 .926 .953 .974 

DICD .759 .801 .836 .890 .911 .928 .943 
JGSA .751 .809 .812 .828 .870 .907 .926 
LHDA .753 .766 .786 .812 .832 .857 .883 
MDA-SSL .781 .816 .847 .883 .908 .927 .945 

Email Single 
SSL 

.852 .887 .913 .939 .956 .968 .977 

DICD .839 .853 .880 .915 .936 .956 .973 
JGSA .715 .765 .805 .889 .938 .978 .987 
LHDA .727 .776 .790 .863 .887 .919 .931 
MDA-SSL .927 .937 .946 .955 .961 .964 .968 

Digit Single 
SSL 

.887 .919 .943 .963 .975 .984 .991 

DICD .883 .895 .922 .952 .967 .982 .991 
JGSA .787 .807 .860 .910 .946 .973 .992 
LHDA .780 .792 .807 .833 .869 .903 .984 
MDA-SSL .948 .959 .969 .979 .984 .988 .992 

Object Single 
SSL 

.564 .584 .605 .634 .659 .691 .733 

DICD .596 .619 .644 .673 .698 .721 .744 
JGSA .602 .622 .645 .675 .702 .728 .754 
LHDA .579 .594 .612 .644 .672 .709 .735 
MDA-SSL .608 .629 .653 .682 .708 .732 .756  
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Further analysis of each objective in MDA showed that the more terms 
added in the objective function, the better the results. 

In sum, our main contributions are summarized as follows. (a) We 
tackle a realistic problem setting of domain adaptation, where most 
domains are label-deficient and need to be helped and recent data 

become more sparsely labeled which makes the learning even more 
difficult. (b) To tackle this problem, we propose a mutual domain 
adaptation, which transfer label information both-way, to search a 
common feature space that matches different data distributions, pre
serves original manifolds, and maximize consistency between labeled 
samples with pseudo-labeling via semi-supervised learning. (c) We 
validate MDA on benchmark datasets for domain adaptation with 
varying the rate of labels, on which it outperforms relevant baselines 
and is especially better for the sparsely labeled data so as to be suitable 
for real-world scenarios. 

However, a number of limitations, including future works, need to be 
addressed. First, the objective function includes several hyper
parameters to be optimized. Accordingly, considerable analyses and 
heuristics on the selection of its value should be further conducted. 
Second, it is required to further exploit non-linear projection. For the 
more discriminative and informative feature space, the non-linear pro
jection would be better than the linear. Third, the integration of multiple 
domains and their optimal combination is reserved for our future study. 

Fig. 7. Results for the ablation study.  

Table 4 
Results for the empirical analysis on the effect of pseudo-labeling.  

Objective Method Proportions of labels 

0.5 
% 

1 % 2 % 5 % 10 
% 

20 
% 

50 
% 

D + M +

C 

w/o 
pseudo- 
labeling 

.687 .703 .723 .757 .779 .807 .855 

w/ 
pseudo- 
labeling 

.694 .719 .738 .757 .779 .805 .832  

Table 5 
Comparison results with other methods.  

Competitive method 0.5% labeled data 5% labeled data 50% labeled data 

B D E K B D E K B D E K 

TCA .533 .544 .561 .556 .589 .609 .645 .648 .690 .708 .760 .777 
SSDA .531 .555 .589 .603 .589 .624 .675 .701 .701 .725 .782 .815 
MEDA .539 .563 .598 .612 .598 .633 .686 .712 .711 .736 .794 .827 
Ours .649 .675 .708 .744 .710 .735 .773 .810 .789 .810 .848 .881  
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