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ABSTRACT

Objective Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elu-
cidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological sys-
tem. We have previously proposed a graph-based integration approach that combines multi-omics data including copy
number alteration, methylation, miRNA, and gene expression data for predicting clinical outcome in cancer. However,
genomic features likely interact with other genomic features in complex signaling or regulatory networks, since cancer
is caused by alterations in pathways or complete processes.

Methods Here we propose a new graph-based framework for integrating multi-omics data and genomic knowledge to
improve power in predicting clinical outcomes and elucidate interplay between different levels. To highlight the validity
of our proposed framework, we used an ovarian cancer dataset from The Cancer Genome Atlas for predicting stage,
grade, and survival outcomes.

Results Integrating multi-omics data with genomic knowledge to construct pre-defined features resulted in higher per-
formance in clinical outcome prediction and higher stability. For the grade outcome, the model with gene expression
data produced an area under the receiver operating characteristic curve (AUC) of 0.7866. However, models of the inte-
gration with pathway, Gene Ontology, chromosomal gene set, and motif gene set consistently outperformed the model
with genomic data only, attaining AUCs of 0.7873, 0.8433, 0.8254, and 0.8179, respectively.

Conclusions Integrating multi-omics data and genomic knowledge to improve understanding of molecular pathogenesis
and underlying biology in cancer should improve diagnostic and prognostic indicators and the effectiveness of therapies.

INTRODUCTION

Translational bioinformatics is an emerging field in which basic
genomic and biomedical data are translated into clinical products
in order to generate clinical knowledge for use in various
applications.' One of the main problems in translational bioin-
formatics is predicting clinical outcome using molecular-based
data such as gene expression profiles for improving diagnostics,
prognostics, and further therapeutics.® In particular, DNA micro-
array technologies have been widely used to predict clinical out-
comes in several types of cancer.*™® However, there is emerging

to investigate the multilayered genetic basis of disease for
improving the ability to diagnose, treat, and prevent cancer. The
Cancer Genome Atlas (TCGA) is a large-scale collaborative initia-
tive to improve our understanding of the multilayered molecular
basis of cancer. The TCGA research network has produced
many prominent reports in the literature related to several types
of cancer on interim analyses of copy number alteration (CNA),
somatic mutation, miRNA, methylation, gene expression, and
protein expression data.""~"” The International Cancer Genome

evidence that gene expression profiles, which constitute a single
level of genomic data, are insufficient for fully understanding
tumor behavior or underlying tumorigenesis. This is because
cancer is the phenotypic result of events cumulating through
multi-omic dimensions from genome to proteome.®'°

Recent multi-omics data and clinical information emerging
from cancer patients have provided unprecedented opportunities

Consortium (ICGC) is another comprehensive collaborative initia-
tive that aims to provide a multidisciplinary description of
genomic, transcriptomic, and epigenomic abnormalities in 50
different cancer types.'® While TCGA and the ICGC have opened
numerous opportunities to reveal new insights on the molecular
basis of cancer,'®?° it is imperative to address the issue of inte-
gration with the available multi-omics data in order to better
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- 1. Schematic overview of integration with multi-omics data and genomic knowledge.
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understand cancer phenotypes, and thereby provide an
enhanced global view of the interplay between the different lev-
els of data and knowledge.

We previously proposed a graph-based framework for inte-
grating multi-omics data including CNA, DNA methylation,
miRNA, and gene expression data in predicting clinical out-
comes in glioblastoma multiforme and serous cystadenocarci-
noma in an intermediate integration manner.?' Instead of
combining input matrices before modeling as an early integra-
tion approach, the approach of intermediate integration has the
advantage that a model is trained by weighting multi-omics
data simultaneously through the use of different graph levels in
order to preserve data-specific properties. On the other hand,
the late integration approach involves combining trained multi-
ple models from individual types of data with a decision func-
tion to obtain better predictive performance, which is the
approach adopted in the ensemble technique. In contrast to
multiple independent hypotheses that have to be combined
afterwards, the intermediate integration approach results in
one prediction for each patient and only one hypothesis being
formulated. Other strengths of our infermediate integration
approach are that it can be applied using multiple scales, its
flexibility, and its computation efficiency.?? However, our pre-
vious study integrated multi-omics data without considering
any genomic knowledge.?'

Several studies incorporating genomic knowledge such as
pathways or protein—protein interaction networks based on
gene expression data have been developed to increase their
power in predicting clinical outcomes.?>~?” In addition, Yang
et a® proposed integrating gene expression and pathway or
Gene Ontology (GO) as genomic knowledge in the

development of a classifier. The findings of these studies sug-
gest that integrating gene expression profiles with genomic
knowledge to construct pre-defined features results in higher
performance in predicting clinical outcomes and higher con-
sistency between the results of different studies. Incorporating
genomic knowledge will make signatures obtained from a
predefined gene set more interpretable, and thus provide
greater insight into the complex molecular mechanisms
underlying cancer. However, to the best of our knowledge, no
systematic approach has been reported for integrating the
available multi-omics data and genomic knowledge for pre-
dicting clinical outcome of cancer. Here we propose a new
methodological framework for integrating multi-omics data
and genomic knowledge in an intermediate integration
manner with the aim of better elucidating cancer phenotypes
(figure 1).

In order to highlight the validity of the proposed framework,
ovarian cancer data from TCGA were adopted for predicting
outcomes according to survival, stage, and grade as a baseline
task. Ovarian cancer has the highest mortality among gyneco-
logical malignancies in the USA.?° Patients with ovarian cancer
are likely to be diagnosed at the late stage due to its asympto-
matic nature, which has resulted in poor survival statistics.*® In
addition, responses to standard chemotherapy such as plati-
num-taxane vary among patients, and tend to be poor for
advanced cases. Integrating multi-omics data and genomic
knowledge for predicting clinical outcome will lead to a better
understanding of the multilayered genetic determinants of
ovarian cancer survival and responses to treatment, further
providing the possibility of identifying alternative therapies that
could improve outcomes.
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MATERIALS AND METHODS
Data and genomic knowledge
Normalized multi-omics datasets in ovarian cancer were
retrieved from the TCGA data portal (http://tcga-data.nci.nih.
gov/; table 1). In order to directly map from genomic features
to genomic knowledge such as pathway or GO gene sets,
multi-omics data were summarized as a gene feature (with the
exception of miRNA data). CNA data were downloaded from
level 3 in the TCGA portal as segmentation results, and then
divided into 23 228 gene features containing segmentation val-
ues when genes were overlapping in the segmented region.
A matrix of DNA methylation was constructed containing 9129
genes mapped to probes of a DNA methylation chip. The
included gene expression data and miRNA data comprised
12 042 genes and 799 miRNAs, respectively.

Using the clinical information from ovarian cancer patients,
a binary classification problem was formulated. Three sets of
classifications were defined as follows based on the clinical
outcomes of ovarian cancer: (i) early stage (T1 or T2) or late
stage (T3 or T4), (i) low grade (G1 or G2) or high grade (G3 or
G4), and (iii) short-term (less than 3years) or long-term (at
least 3years) survival (table 2).>' Predefined gene sets as
genomic knowledge were downloaded from the Molecular
Signatures Database (MSigDB 3.0).>> We used chromosomal
position (C1), pathway (C2), motif (C4), and GO (C5) gene sets
from MSigDB for a further investigation involving 326, 3272,
688, and 1454 gene sets, respectively.

Constructing gene sets for miRNA data

Each predefined gene set comprises a list of genes with rele-
vant biological annotations. However, it is difficult to directly
map miRNA onto gene sets since the member of a gene set is

also itself a gene. Thus, a new gene set containing miRNAs
rather than genes needs to be constructed in order to integrate
miRNA data and relevant genomic knowledge. Suppose we
would like to perform the enrichment test of a gene set, which
consists of genes, with respect to specific miRNA, which con-
sists of its target genes. The numbers of genes in a gene set
that are annotated (p;) and not annotated (p;) by the miRNA are
used in a 2x2 contingency table along with the numbers of
genes that are not in the gene set, and can be either annotated
(P or not annotated (p;) with the miRNA (figure 2). Then, the
enrichment test can be conducted based on the contingency
table via a hypergeometric distribution. An miRNA and a spe-
cific gene set (ie, pathway) should be inserted for the proce-
dure as an input. After calculating hypergeometric distribution
based on the miRNA and its target gene information, p value
for the association between the miRNA and the specific gene
set can be obtained as an output. Thus, through the test for the
entire miRNAs per a specific gene set, the final significant
miRNA members for the gene set can be obtained. In order to
construct the new gene set containing miRNAs instead of
genes, enrichment tests were conducted for chromosomal
position, pathway, motif, and GO gene sets (p<0.05).

Classification of clinical outcomes

We used a graph-based semi-supervised learning (SSL)
method; this scheme falls halfway between unsupervised and
supervised learning for improving the predictive power by using
unlabeled data.>*~%® Graph-based SSL has advantages of com-
putational efficiency and representational ease when applied to
a biological system. The learning time of graph-based SSL
increases nearly linearly with the number of graph edges, how-
ever, accuracy is comparable to those of other methods such

Table 1: Data description

Data type Platform No. of features
CNA Agilent SurePrint G3 Human CGH Microarray Kit 1 x 1M | 23 228 genes
Methylation Infinium Humanmethylation27 BeadChip 9219 genes
Gene expression | Affymetrix HT Human Genome U133 Array Plate Set 12 042 genes
miRNA Agilent Human miRNA Microarray Rel2.0 799 miRNAs

CNA, copy number alteration.

Table 2: Clinical outcomes

Clinical outcome

No. of samples (negative/positive)

Early stage (T1 or T2) vs late stage (T3 or T4)

493 (39/454)

Low grade (G1 or G2) vs high grade (G3 or G4)

381 (43/338)

Short-term survival (survived less than 3 years)
vs long-term survival (survived longer than 3 years)

340 (147/193)
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- 2: Framework for calculating gene sets for miRNA data.
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Furthermore, the graph structure could improve the interpreta-
tion of biological phenomena,**=*' which is one of the advan-
tages of graph-based SSL.

We assumed that the clinical outcomes of two patients
were more likely to be similar if the two patients were more
closely related to each other than to others. Therefore, the clini-
cal outcome can be predicted based on the similarities
between patients based on their genomic profiles. Edges in
graph-based SSL represent similarities between cancer
patients that can be extracted from different multi-omics data
including CNA, methylation, miRNA, or gene expression data
(figure 1). A graph is a general method for analyzing relation-
ships between objects, with its nodes representing patients
and its edges showing relationships between them. A labeled
patient could be marked either by ‘—1’ or ‘1’, representing two
possible clinical outcomes of low grade or high-grade, respec-
tively. The edges perform an essential role in influencing prop-
agation between the patients to predict the true label of the
unlabeled patient. In graph-based SSL, a node i represents a
patient x; (i=1,...,n), and an edge represents a relationship
between patients. A n x n symmetric weight matrix W contains
an element w; as an edge strength from node i to node j.

In order to calculate edge strength, a Gaussian function of
Euclidean distance between patients was used:

e
. eXp(——(xi_x') (i X‘)) Ei~g W

ol

0 otherwise.

If i is in j's k-nearest-neighborhood or vice versa, nodes i, j can
be connected by an edge. The labeled nodes have labels y, €
{—1, 1}, while the unlabeled nodes have zeros y,=0. An n-
dimensional  real-valued  vector  f=[f"f,"T=(f,.. .,
fiit,- - .,1‘,1:.+u)T is the output of graph-based SSL. This method
consists of two conditions, which are loss condition that
assumes f; should be close to the given label y; in labeled
nodes and smoothness condition assuming that f; should not
be too different from the f; of adjacent nodes. The output f can
be calculated by minimizing the quadratic function as
follows 333236

min(f -y +pf Lf @

L42

where y=(y,...,y;, 0,...0)", and the graph Laplacian matrix
is defined as L=D—W where D=diag(d), di=> jw;.
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The parameter p trades off smoothness condition versus loss
condition. The final solution of this problem can be obtained as

f=(I+pL) 'y @

where | is the identity matrix.

Similarity matrix incorporating genomic knowledge

One of main problems encountered in this study was calculat-
ing the similarity matrix containing genomic knowledge. The
underlying idea of the proposed measure is that genes are not
likely to act in isolation, but rather interact with other genes via
complex signaling or regulatory networks, since cancer is
caused by alteration in pathways or complete processes. Thus,
in order to construct a similarity matrix containing genomic
knowledge, the original matrix was converted into a new matrix
containing gene sets as a new feature by aggregating values of
the genes in the gene set and then dividing by the total number
of gene members in a gene set for the normalization (see
online supplementary figure S1). After a matrix based on
genomic knowledge was constructed, a weight matrix was cal-
culated using the Gaussian function of the Euclidean distances
between patients, and then the k-nearest-neighborhood
method was used for making a graph structure. Thus, patients
who are closer to each other in the Euclidean space are
assigned larger edge weights. This weight matrix containing
genomic knowledge can be used as an input for graph-based
SSL, representing a genomic knowledge graph based on the
genomic profiles of the patients.

Integration of multiple graphs

Multiple graphs can be generated from multi-omics data and
genomic knowledge (figure 1). Four data-driven graphs can be
generated from CNA, methylation, miRNA, and gene expression
data, respectively. In addition, pathway, GO, motif, and chro-
mosomal position gene set knowledge-driven graphs can be
generated based on each set of genomic data. However, the
ability to predict clinical outcomes can be improved when
multi-omics data is integrated with genomic knowledge. This is
because a single dimension of genomic data might have limita-
tions such as incomplete information or noise. In addition, each
graph from multi-omics data can be considered as partly inde-
pendent from and partly complementary to that from other
graphs. Thus, it is not sufficiently accurate to predict clinical
outcomes using only a single dimensional genomic data set.
Multi-omics data or genomic knowledge can be integrated by
employing a graph integration method via finding optimum
combination coefficients when each data set is presented as a
graph form.2"*"** The main function of this method is to find
the combination coefficients o for the individual graph of the
following mathematical formulation:

K
muin y ([ + Z aily) "ly, Z a < p o (4)
k=1 k

where K represents the number of graphs from multi-omics
data or genomic knowledge and Ly corresponds to

graph-Laplacian of graph Gy. The final solution can be
obtained by

K
f=(I+ Zakl_k)_]y‘ (5)
k=1

RESULTS

For each problem, we calculated the area under the curve of
the receiver operating characteristic (AUC) as a performance
measure. To avoid overfitting, five-fold cross-validation was
performed. Since genome-wide biological data commonly suf-
fer from high dimensionality containing many redundant fea-
tures and noise, which might be associated with low accuracy
and computational difficulty, we used the Student’s t test as a
feature-selection method.** Although there are many different
types of feature-selection methods, such as wrapper, filter,
and embedded methods,”> we used an univariate feature-
selection method in the present study for emphasizing not the
effect of feature selection for the accuracy but the effect of
integration with multi-omics data or genomic knowledge.

Effects of integrating genomic knowledge

Figures 3-5 show the AUC performances for the three sets of
clinical outcome prediction. For the low-grade versus high-
grade outcome, gene expression data alone via SSL produced
an AUC of 0.7866. However, the models with genomic knowl-
edge graphs, which were obtained after transforming the origi-
nal gene expression matrix based on the pre-defined gene
sets, showed better performances than the model from the
original gene expression data (figure 3A). These results suggest
that genes are not likely to act in isolation, but rather interact
with other genes in predefined gene sets such as via a path-
way. In particular, the integration with gene expression data
and genomic knowledge even outperformed the model with
a gene expression graph or a genomic knowledge graph alone
(figure 3A). Note that similar results were obtained for
other genomic data: methylation, CNA, and miRNA data
(figure 3B-D). For the other clinical outcomes (ie, early stage
vs late stage and short-term survival vs long-term survival), the
overall results showed that integration with genomic knowl-
edge produced a gradual increase in AUC (figures 4 and 5). We
found that integrating the genomic knowledge increases the
power in predicting clinical outcomes.

In order to compare between data-driven integration and
knowledge-driven integration, we integrated multi-omics data
(ie, CNA, methylation, miRNA, and gene expression graph) as a
data-driven integration, and integrated the best genomic
knowledge graph from each type of genomic data (ie,
C_Pathway, M_Pathway, miR_GO, and E_GO graphs) as a
knowledge-driven integration for the classification of low-grade
versus high-grade outcomes (figure 6). Notably, the knowl-
edge-driven integration (AUC=0.8679) outperformed the
data-driven integration (AUC=0.8243); however, there was no
significant difference between them (p=0.1574, t test).
Together these results suggest that the use of genomic
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Figure 3: Results of low versus|high grade outcome. E indicates the semi-supervised learning (SSL) model from gene
expression data. E_Pathway, E_GO, E_Chr, and E_Motif represent the SSL model using pathway, GO, chromosomal posi-

tion, and motif gene set based on gene expression data. E+Pathway means the model integrating a gene expression graph
and a pathway-based genomic knowledge graph. A dashed line indicates the area under the curve of the model with
genomic data alone. ANOVA was used for the significance test between the model with a single genomic data set alone
and models from integration with a single genomic data set and genomic knowledge. An asterisk (*) indicates statistical
difference among groups (p<0.05). (A) Integration results between gene expression and genomic knowledge.
(B) Integration results between methylation and genomic knowledge. (C) Integration results between CNA and genomic
knowledge (p=0.0495). (D) Integration results between miRNA and genomic knowledge (p=0.0026). C, CNA; CNA, copy
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number alteration; E, gene expression; GO, Gene Ontology; M, methylation; miR, miRNA data.
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knowledge improves the predictive power in explaining cancer
phenotypes due to the co-operation between genomic proc-
esses in the pathways involved in cancer.

Relative contribution of genomic knowledge

Biological and clinical implications can be drawn from our
results. Figure 7 illustrates the following observations concern-
ing the different contributions of genomic knowledge by the
four types of genomic data. For the low-grade versus high-
grade outcomes, the GO gene set performed best when incor-
porating gene expression data. In contrast to gene expression
data, however, CNA, methylation, and miRNA data showed that
integrating the pathway gene set provided the best perform-
ance (figure 7A). In the first stage of investigation we posed the
following question: which genomic knowledge is more

informative for predicting the clinical outcome of cancer? For
three cases of clinical outcome prediction, DNA methylation
data consistently showed the pathway gene set to be the best
contributor in a model. However, the effect of combining
genomic knowledge with other genomic data sets (ie, gene
expression, CNA, or miRNA data) varied with the clinical out-
come; for example, the motif gene set-based gene expression
showed the best performance (figure 7). There has been no
clear conclusion about the relative importance of different types
of genomic knowledge such as pathway, GO, motif, and chro-
mosomal position gene sets, and protein—protein interactions;
however, our combined results suggest that the effect of
genomic knowledge integration varies with clinical outcomes
and the types of genomic data. However, this result may be
due to the nature of the knowledge collected from each
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Figure 4: Results of early versus late stage outcome. E indicates the semi-supervised learning (SSL) model from gene
expression data. E_Pathway, E_GO, E_Chr, and E_Motif represent the SSL model using pathway, GO, chromosomal posi-

tion, and motif gene set based on gene expression data. E+Pathway means the model integrating a gene expression graph
and a pathway-based genomic knowledge graph. A dashed line indicates the area under the curve of the model with
genomic data alone. ANOVA was|used for the significance test between a model with a single genomic data set alone and
models from integration with a single genomic data set and genomic knowledge. An asterisk (*) indicates the statistical dif-
ference among groups (p<0.05), (A) Integration results between gene expression and genomic knowledge (p=0.0394).
(B) Integration results between methylation and genomic knowledge (p=0.0221). (C) Integration results between CNA and

genomic knowledge. (D) Integratjon results between miRNA and genomic knowledge. C, CNA; CNA, copy number altera- g

tion; E, gene expression; GO, Gene Ontology; M, methylation; miR, miRNA data. 3
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database rather than a true information benefit of any single
database.

Historical improvement of genomic knowledge

Genomic knowledge consists of pieces of accumulated biologi-
cal knowledge. We therefore assumed that the predictive
power of the model integrating genomic knowledge will
increase as long as the quality of genomic knowledge
improves. In order to validate the historical effect of integration
with genomic knowledge, we compared the performances of
different versions of genomic knowledge. The following five
versions of MSigDB were retrieved: 1.0, 2.1, 2.5, 3.0, and 3.1,
which were released in 2005, 2007, 2008, 2010, and 2012,
respectively. The GO gene set was only available from MSigDB
versions 2.5, 3.0, and 3.1, while other gene sets were available

from all versions of MSigDB. Figure 8 shows the historical
improvement of genomic knowledge for the classification of
low-grade versus high-grade outcomes based on gene expres-
sion data. Notably, with the exception of the chromosomal
position gene set, the AUC for the models incorporating
genomic knowledge (ie, pathway, GO, and motif gene sets)
increased gradually with version of genomic knowledge.

DISCUSSION AND CONCLUSIONS

Due to the nature of genomic features co-operating in cancer
(eg, in a pathway) rather than acting in isolation, it appears
beneficial to incorporate genomic knowledge when integrating
multi-omics data for predicting the clinical outcome of cancer.
This approach should improve the predictive power and also
provide an enhanced global view of the interplay between the
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Figure 5: Results of short-term versus long-term survival outcome. E indicates the semi-supervised learning (SSL) model
from gene expression data. E_Pathway, E_GO, E_Chr, and E_Motif represent the SSL model using pathway, GO, chromo-
somal position, and motif gene |set based on gene expression data. E+Pathway means the model integrating a gene
expression graph and a pathway-based genomic knowledge graph. A dashed line indicates the area under the curve of the
model with genomic data alone. ANOVA was used for the significance test between the model with a single genomic data
set alone and models from integration with a single genomic data set and genomic knowledge. An asterisk (*) indicates the
statistical difference among groups (p<0.05). (A) Integration results between gene expression and genomic knowledge.
(B) Integration results between methylation and genomic knowledge. (C) Integration results between CNA and genomic
knowledge (p=0.0037). (D) Integration results between miRNA and genomic knowledge. C, CNA; CNA, copy number altera-
tion; E, gene expression; GO, Gene Ontology; M, methylation; miR, miRNA data.
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different levels of data and knowledge. In the present study we available multi-omics and genomic knowledge for predicting
employed a proposed new methodological framework for inte- the clinical outcome of cancer. Our proposed framework has
grating multi-omics data and genomic knowledge in the inter-  the advantage of flexibility that makes it easy to integrate any
mediate integration manner for better explaining cancer kinds of genomic data or genomic knowledge due to the inter-
phenotypes. The issue of integrating heterogeneous genomic mediate integration approach; this is analogous to the plug and
data and clinical data has recently been regarded as one of  play functionality of a computer. In addition, the strengths of
main problems in translational bioinformatics that needs to be graph-based integration include its high computational effi-
addressed before future clinical applications can be realized.? ciency (which is due to its sparseness properties) combined
To the best of our knowledge, no previous studies have applied with an accuracy that is comparable to those of other methods
a systematic and comprehensive approach to integrating the such as kernel-based integration.?2>”
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Figure 6: Comparison between data-driven integration and knowledge-driven integration. C, CNA; CNA, copy number alter-
ation; E, gene expression; M, methylation; miR, miRNA data.
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The results of our computational experiments indicated that
the model incorporating genomic knowledge was greatly
improved compared to the model with genomic data alone. In
particular, not only gene expression data but also other types
of genomic data such as CNA, methylation, and miRNA data
showed the positive effect of integration with genomic knowl-
edge. These results suggest that the use of genomic knowl-
edge improves the predictive power in explaining cancer
phenotypes because any genomic mechanisms involved in the
same process (eg, a signaling or metabolic pathway) are likely
to operate together in cancer. In addition, the demonstrated
historical improvement of genomic knowledge (figure 8) sup-
ports the validity of our proposed framework involving the
incorporation of genomic knowledge into a model. It can further
be expected that the accuracy of any model integrating multi-
omics data and genomic knowledge will improve as long as
the quality of genomic knowledge increases in the future,
which is highly likely.

Since genomic knowledge involves genes, the features of
multi-omics data should be mapped to the applicable genes in
order to construct similarity matrices incorporating genomic
knowledge. Since miRNA has many target genes, it is difficult
to map from miRNA to its target genes for the annotation of
genomic knowledge such as in the GO enrichment test.*

Thus, in the present study a new gene set was constructed in
order to directly map from miRNAs to the genomic knowledge
based on a hypergeometric distribution. Interestingly, integrat-
ing miRNA and genomic knowledge produced a great improve-
ment (figures 3D, 4D, and 5D). In particular, the performance
of the model integrating miRNA data and pathway gene sets
for the low-grade versus high-grade outcomes improved dra-
matically even though the original performance of miRNA was
not high (figure 3D). This result suggests that our work has
demonstrated how to use original multi-omic features such as
miRNA, CNA loci, or CpG loci for mapping genomic knowledge.

One of the limitations of the current study was that our pro-
posed framework does not consider the inter-relationships
between multi-omics data, such as that between (i) the region
where the number of genes was altered and genes located in
that region, (ii) the site of DNA methylation in the promoter
region and the target genes regulated by promoter regions, or
(iii) the miRNA and its target genes. Thus, a framework for inte-
grating multi-omics data should consider not only genomic
knowledge but also the inter-relationships between different
levels of genomic data under consideration. Furthermore,
incorporating genomic knowledge increases the interpretability
of signatures obtained by using predefined genomic knowl-
edge, and thus provides greater insight into the complex
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Figure 7: Relative contribution of genomic knowledge. (A) The low versus high grade classification. (B) The early versus
late stage classification. (C) The short-term versus long-term survival classification. C, CNA; CNA, copy number alteration;
E, gene expression; M, methylation; miR, miRNA data.
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molecular mechanisms underlying cancer. Therefore, future
studies should attempt to obtain more information about the
obtained signatures associated with clinical outcomes such as
survival.

The TCGA network has generated additional cancer
genomics data for about 25 cancer types, and data generation
should be completed soon. The increasing amount of multi-
omics data and clinical data from cancer patients and the
greater availability of many genomic knowledge bases will
make our proposed framework invaluable for better under-
standing the molecular pathogenesis and underlying biology in
cancer, ultimately leading to better diagnostic strategies and
candidate targets for treatment in different types of cancer.
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