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The purpose of this study is to identify joint motion patterns by classifying the full range of motion
(ROM) into several sections. Forty participants were stratified by age and gender and they performed 18
full-swing motions at a self-selected speed. Joint angle, angular velocity, angular acceleration, and
subjective discomfort rating were collected for each motion. K-means cluster analyses were used to
classify joint motion patterns and ROM sections. The results showed that two or three clusters were
mainly determined by the kinematic variables of angular velocity and acceleration. The motions of three
clusters showed that the ROM sections of low and moderate velocity with moderate and high acceler-
ations occurred in the initial (negative) and terminal (positive) phases, respectively, whereas those of
high velocity with low acceleration were shown in the mid (neutral) phase. The motions of two clusters
revealed that while the patterns of high velocity and high acceleration were found on the positive side of
the ROM, those of low velocity and low acceleration were on the negative and neutral sides. The ROM
sections close to both ends of the ROM may have a larger physical load than the others. This study
provides information that could be useful for developing postural analysis tools for dynamic work.

� 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
1. Introduction

Work-related musculoskeletal disorders (WMSDs) show wide-
spread inflammatory and degenerative symptoms that are com-
monly associated with the neck, shoulder, elbow, forearm, wrist,
and hand (Buckle and Devereux, 2002). The main physical risk
factors for WMSDs are a rapid work pace, repetitive motion,
forceful manual exertion, awkward body posture, and vibration
(Punnett and Wegman, 2004). In particular, awkward working
postures at extreme joint angles can have a significant effect on
aworker’s musculoskeletal system (Armstrong et al., 1984). Various
postural analysis tools have been developed to investigate the risk
of WMSDs for the whole body (Karhu et al., 1977; Corlett et al.,
1979; Armstrong et al., 1982; Keyserling, 1986; McAtamney and
Corlett, 1993; Hignett and McAtamney, 2000). These methods are
generally divided into pen-and-paper-based observational tech-
niques and computer-aided observational methods involving vid-
eotaping (Li and Buckle, 1999).

Most postural analysis tools have a full range of motion (ROM)
for each body segment divided into several sections. For instance,
Armstrong et al. (1982) used sections of equivalent ranges for the
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upper extremity at intervals of 45�. Keyserling (1986) classified
shoulder and trunk postures by considering angles of 20�, 45�, and
90�. He developed posture classifications from a previous study in
which non-neutral postures had been associated with fatigue or
musculoskeletal disorders. Rapid upper limb assessment (RULA)
and rapid entire body assessment (REBA) categorized postures for
the whole body using the positions 0�, 15�, 20�, 45�, 60�, 90�, and
100� (McAtamney and Corlett, 1993; Hignett and McAtamney,
2000). They developed a method for recording postures based on
the interpretation of relevant studies associated with each body
segment. The shortcoming of the previous postural analysis tools is
that several ROM sections are simply defined without rationale or
developed by a simple combination of the results from previous
studies. Thus, this non-rationale decision and inconsistent combi-
nation of results could loose the information of dynamic joint
motions such as kinematic, kinetic, and physiological responses.

In addition, most studies on postural analysis tools have eval-
uated the physical workload, such as electromyographic (EMG)
activity, for static postures. Herberts et al. (1980) investigated the
localized muscle fatigue of the shoulder in eight static arm posi-
tions. They found that overhead work with 45� of abduction
resulted in lower localized muscle fatigue than 0� or 90� of
abduction. Hagberg (1981) also studied shoulder muscular fatigue
at two different elevated arm positions. He reported that significant
muscular fatigue occurred after 5 min at 90� of forward flexion and
ghts reserved.
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90� of abduction. Chaffin (1973) evaluated localized fatigue of the
head and upper arm in different positions during continuous
holding. He found a rapid increase in muscular fatigue at 30� of
flexion for the head and 30� of abduction for the upper arm.
However, there is a lack of reference data for dynamic motions. For
example, Li et al. (2006) analyzed dynamic reaching behavior to
Automatic Teller Machine for disabled people with wheelchair
using a real-time virtual interactive design methodology. However,
this study did not provide generalized ROM sections for postural
analysis tools. In a dynamic situation, changes in force and muscle
fiber length throughout the ROM significantly influence muscle
activity (Larsson et al., 1999). Therefore, postural analysis tools
based on static posture evaluation seem to be unsuitable for
workplaces where dynamic motions are frequent.

Cluster analysis is often used to provide classifications, identify
patterns of association, and divide samples into homogeneous
groups for dynamic motions (Rapkin and Luke, 1993). This method
is commonly used to classify motion or motion patterns in physical
therapy, surgical communities, and ergonomics. Mulroy et al.
(2003) performed gait pattern classification of patients with re-
covery phases based on kinematic parameters. Toro et al. (2007)
extracted gait patterns in children with cerebral palsy using ROM
variables for the hip, knee, and ankle. Rozumalski and Schwartz
(2009) defined crouch gait patterns in patients with cerebral
palsy based on age, ROM, strength, selective motor control, and
spasticity. Kyung et al. (2010) also identified drivers’ postural
strategies for two vehicle types through the interpretation of sev-
eral joint angles. In addition, Li and Zhang (2009) used the K-means
cluster analysis to separate into two groups of lifting strategies
based on the relative strength between the back and knees.

As mentioned earlier, most ROM sections of postural analysis
tools evaluated the physical load of several predefined static pos-
tures. These static motion-based postural analysis tools have even
been applied to dynamic working motions in an industrial field.
Therefore, assessment of dynamic motions is necessary to develop
more realistic postural analysis tools. The aim of this study is to
evaluate the dynamic joint motions of the head, upper arm, lower
arm, hand, trunk, upper leg, lower leg, and foot using cluster
analysis of kinematic, demographic, and subjective variables in
order to define ROM sections that have homogeneous motion
characteristics.
2. Methods

2.1. Participants

Forty healthy participants (10 youngmales, 10 young females,10
old males, and 10 old females) volunteered for the experiment.
After informed consent, the participants were briefly provided with
the details of the experimental purposes and procedures. They had
no previous history of musculoskeletal disorders of thewhole body.
The average age, height, and body mass of the participants are
reported in Table 1.
Table 1
Mean � standard deviation of the participants’ anthropometric dimensions.

Dimension Young Old Mean

Male Female Male Female

Age (years) 27.2 � 1.2 23.4 � 1.6 56.4 � 3.2 56.9 � 3.3 41.0 � 15.9
Height (cm) 175.1 � 4.3 160.5 � 4.5 168.6 � 3.9 155.9 � 4.7 165.0 � 8.6
Body

mass (kg)
73.3 � 10.7 54.5 � 7.3 72.3 � 9.2 58.1 � 5.2 64.5 � 11.8
2.2. Apparatus

In order to collect kinematic data of the joint motions, a motion
capture system (VICON, Oxford, UK) was used with nine cameras at
a sampling rate of 60 Hz. Twenty-two reflective surface markers
with a diameter of 14 mm were adhered to the bony landmarks of
the head, trunk, and right side of the upper arm, lower arm, hand,
upper leg, lower leg, and foot based on the standard procedures of
the Plug-In Gait model (VICON, Oxford, UK). VICON Nexus� soft-
ware was used to process all the trials, and Polygon� software
(VICON, Oxford, UK) was used to analyze the data.

2.3. Procedure

The anthropometric dimensions of the participants were
measured with a caliper and a measuring tape. Surface markers
were attached to the skin and body gymsuits worn by the partici-
pants. The right side of upper and lower extremity was measured
and it was the dominant side for all subjects. For the initial posture,
the participant stood and released his or her arms alongside the
trunk with the palm facing the body. Each participant randomly
tried 18 joint motions in the initial posture for the body segments
without any restrictive straps. The joint motions of positive and
negative directions were flexion-extension (F/E), right-left lateral
flexion (R/L-LF), and right-left rotation (R/L-R) for the head; flexion-
extension (F/E), abductioneadduction (AB/AD), and externale
internal rotation (ER/IR) for the upper arm; flexion (F) for the
lower arm; flexion-extension (F/E) and ulnar-radial deviation (UD/
RD) for the hand; flexion-extension (F/E), right-left lateral flexion
(R/L-LF), and right-left rotation (R/L-R) for the trunk; flexion-
extension (F/E), abductioneadduction (AB/AD), and externale
internal rotation (ER/IR) for the upper leg; flexion (F) for the
lower leg; and plantar-dorsi flexion (PF/DF) and eversion-inversion
(EV/IV) for the foot. In other words, flexion (F), right lateral flexion
(R-LF), right rotation (ReR), abduction (AB), external rotation (ER),
ulnar deviation (UD), plantar flexion (PF), and eversion (EV) had
positive directions, while the othermotions had negative directions
based on a biomechanical coordinate system (Wu and Cavanagh,
1995). For the lower arm and lower leg, only 1 rotational angle
was collected due to the physiological limitation such as hinge
joints. The participants were encouraged to perform each joint
motion as fully as possible by swinging the corresponding segment
in order to reach the maximum ROM of both positive and negative
directions at a self-selected speed. The participants continued
repeating each joint motion for three cycles without pausing. For
example, in one cycle the participant fully flexed, extended, and
flexed the head again for the head F/E. For the lower extremity
motions, the participant held an assistive frame to maintain bal-
ance. After each joint motion, the participant was provided with
visual analog scales (VAS) and rated the overall levels of comfort
and discomfort. The subjective ratings weremeasured numerically:
0 indicated very comfortable and 100 indicated very
uncomfortable.

2.4. Data analysis

A Woltring filter with a mean-square error value of 20 was
implemented to filter the raw marker trajectories, and then ROM,
angular velocity and angular acceleration were obtained. The time-
normalization (0e100%) of ROM, angular velocity and angular ac-
celeration was performed to calculate and compare between six
different motions for each joint motion with Polygon� software.
The initial and final time point was the minimum and maximum
range of motion for each joint motion. For example, three flexion
and three extensions were actually performed during three cycles
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of head F/E, and then time-normalization was conducted for each
motion, respectively. Based on the normalized time, the ensemble
kinematic pattern such as ROM, angular velocity, and angular ac-
celeration were obtained based on the three flexion and three ex-
tensions of head F/E. The average motion pattern of head F/E
including ROM, angular velocity and angular acceleration by whole
participants is shown in Fig. 1. This whole procedure was applied to
the rest of other joint motions.

For the ROM, angular velocity and angular acceleration, extreme
outliers were removed out of mean � (2.58 � standard deviation).
The full data set of ROM, angular velocity and angular acceleration
for each joint motion was 4040 (40 participants � 101 normalized
time points from 0% to 100%), respectively. However, actual data-
sets varied from 3535 to 4040 due to the outlier removal of ROM,
angular velocity and angular acceleration. The actual datasets for
each joint motion was determined based on the minimum datasets
from ROM, angular velocity and angular acceleration. As a result,
hand F/E had 3535 data set; upper arm ER/IR, trunk R/L-LF, lower
leg F and foot EV/IV had 3737 data set; hand UD/RD and upper leg
F/E had 3838 data set; head R/L-LF and R/L-R, lower arm F, trunk F/E
and R/L-R, upper leg AB/AD and foot PF/DF had 3939 datasets; head
F/E, upper arm F/E and AB/AD and upper leg ER/IR had 4040
datasets. Subjective ratings for each participant were also
Fig. 1. The example of average motion pattern for head F/E.
normalized by equation (1) to reduce response bias between
participants.

N ¼ xi � xmin
xmax � xmin

� 100 (1)

where N denotes normalized subjective ratings, xi denotes the
subjective rating of each joint motion, xmin is the minimum sub-
jective rating of 18 joint motions, and xmax is the maximum sub-
jective rating of 18 joint motions.

The nonhierarchical K-means clustering objective function was
used to define clusters that showed different characteristics of ROM
sections in each joint motion. The random initial centroid was
selected, and then iteration and reassigning elements were per-
formed until they find the minimum distance to centroid. This
method is faster than hierarchical clustering methods and mini-
mizes variance within clusters (Carayon, 1994). The kinematic
variables were used as the ensemble of angular velocity and
angular acceleration. Those measures included the average motion
pattern of each repetitive joint motion for each subject, and they
were highly related to the dynamic motion (Sjölander et al., 2008).
The demographic variables were age and gender, and subjective
variable was the subjective ratings of comfort and discomfort since
they were significant factors that affected ROM (Genaidy and
Karwowski, 1993; Doriot and Wang, 2006). Thus, input variables
for cluster analysis were determined as angular velocity, angular
acceleration, age, gender and subjective ratings. If the joint motion
does not have outliers, 4040 datasets of each variable were ana-
lyzed. The ROM was determined as the composition of final clus-
ters. The Z-score standardization of variables was conducted using
mean and standard deviations of each variable in order to balance
the effect of different units (equation (2)).

Z � score ¼ meanðclusterÞ �meanðtotalÞ
SDðtotalÞ (2)

The initial k ¼ 2, 3, 4, 5 and 6 were empirically conducted and
compared to find the optimal number of clusters for each joint
motion. The optimal number of final clusters for each joint motion
was determined based on the following criteria: First, the inter-
pretation of clusters should not be complicated, and it was decided
based on a visual examination of mean and proportion data for all
variables (Everitt et al., 2001); Second, the optimal number of
clusters was also determined by the data points of each cluster. If
the data points of one or two clusters were too small (<50) or too
large (>3700), the clusters were formed again because small data
points could increase the within group variability, and large data
points could decrease the difference between clusters (Mulroy
et al., 2003); Third, resulting ROM sections associated clusters for
each joint motion should be distinguishable among divided clus-
ters. Thus, the one-way repeated analyses of variance (ANOVA)
with a significance level of 0.05 were performed for each joint
motion to analyze the statistical difference of ROM sections across
clusters. Independent variable was the type of cluster (n ¼ 2 or 3)
and dependent variable was the ROM associated with clusters.
ANOVA was repeatedly conducted for each joint motion. SAS sta-
tistical software (version 9.1) was used to conduct the analyses
(SAS, Cary, USA).
3. Results

Table 2 shows the results of cluster analysis and mean and
standard deviation of angular velocity, angular acceleration, and
subjective ratings for each joint motion. Two or three clusters for
each joint motion were identified based on the criteria mentioned



Table 2
Cluster analysis results andmean� standard deviation of angular velocity, angular acceleration, and subjective rating. The letters L, M, H, V, and A indicate low, moderate, high,
velocity, and acceleration, respectively, in the cluster column. The motions with two clusters have only LV-LA and HV-HA, whereas those with three clusters have only LV-MA,
HV-LA, MV-MA, and MV-HA.

Segment Motion Cluster No. of data Angular velocity (�/s) Angular acceleration (�/s2) Subjective
rating (%)

Head F/E 1 (LV-LA) 3034 109.9 � 77.2 207.2 � 457.1 45 � 32
2 (HV-HA) 1006 136.3 � 76.2 �614.1 � 445.5 24 � 25

R/L-LF 1 (LV-MA) 1739 39.7 � 39.0 196.9 � 303.6 57 � 36
2 (HV-LA) 1365 121.4 � 50.1 113.2 � 332.6 32 � 34
3 (MV-HA) 835 87.0 � 48.0 �599.2 � 279.5 60 � 33

R/L-R 1 (LV-LA) 3528 153.5 � 124.5 221.7 � 885.6 31 � 29
2 (HV-HA) 411 248.7 � 124.0 �1910.4 � 1106.4 40 � 30

Upper arm F/E 1 (MV-MA) 1839 146.4 � 93.8 531.0 � 443.5 16 � 16
2 (HV-LA) 1285 253.0 � 83.8 �29.1 � 644.8 51 � 32
3 (LV-HA) 916 132.9 � 81.9 �974.5 � 562.0 21 � 20

AB/AD 1 (LV-LA) 2164 161.9 � 87.4 510.0 � 399.6 34 � 31
2 (HV-HA) 1876 167.0 � 86.1 �572.1 � 436.5 38 � 32

ER/IR 1 (LV-LA) 2045 121.8 � 116.0 625.4 � 1238.1 20 � 23
2 (HV-HA) 1692 263.8 � 141.6 �737.9�1184.8 43 � 34

Lower arm F 1 (HV-HA) 1823 164.9 � 118.8 672.6 � 769.7 10 � 14
2 (LV-LA) 2116 156.3 � 109.4 �602.8 � 1022.2 2 � 5

Hand F/E 1 (LV-LA) 1950 142.9 � 106.9 1053.7 � 967.4 27 � 29
2 (HV-HA) 1585 184.6 � 112.0 �1260.7 � 1129.0 27 � 26

UD/RD 1 (LV-LA) 2773 93.2 � 78.8 452.5 � 714.8 53 � 34
2 (HV-HA) 1065 131.2 � 95.2 �1189.9 � 739.8 53 � 36

Trunk F/E 1 (MV-MA) 1613 36.9 � 23.9 95.9 � 101.1 80 � 23
2 (HV-LA) 1164 63.2 � 28.1 12.8 �121.2 40 � 30
3 (LV-HA) 1162 32.4 � 22.6 �140.5 � 107.3 72 � 26

R/L-LF 1 (MV-MA) 1265 32.5 �17.9 139.5 �125.4 64 � 30
2 (HV-LA) 1445 71.5 � 16.4 �1.4 � 100.0 39 � 26
3 (LV-HA) 1027 31.4 �17.4 �174.5 � 126.4 51 � 27

R/L-R 1 (LV-MA) 1956 32.4 � 20.7 131.6 � 115.0 57 � 33
2 (HV-LA) 882 95.5 � 25.2 60.5 � 195.5 43 � 33
3 (MV-HA) 1101 41.5 � 25.9 �282.6 � 180.0 59 � 35

Upper leg F/E 1 (MV-MA) 1543 88.4 � 52.4 514.1 � 392.8 58 � 31
2 (HV-LA) 1643 188.2 � 58.6 �131.0 � 574.3 39 � 32
3 (LV-HA) 652 67.4 � 48.8 �852.5 � 529.3 65 � 31

AB/AD 1 (LV-LA) 2324 66.3 � 48.7 125.5 � 436.9 31 � 31
2 (HV-HA) 1615 119.1 � 58.2 �177.2 � 545.6 70 � 30

ER/IR 1 (HV-HA) 1648 60.5 � 44.7 274.8 � 432.5 66 � 34
2 (LV-LA) 2392 40.4 � 33.0 �184.8 � 396.3 46 � 33

Lower leg F 1 (LV-LA) 2670 161.5 � 105.5 705.4 � 1015.9 30 � 31
2 (HV-HA) 1067 260.3 � 129.4 �1689.2 � 1547.5 38 � 37

Foot PF/DF 1 (HV-HA) 1300 137.9 � 103.0 1232.4 � 808.6 35 � 33
2 (LV-LA) 2639 107.6 � 90.6 �600.1 � 629.2 31 � 31

EV/IV 1 (HV-HA) 54 113.8 � 106.1 2505.2 � 1718.7 96 � 8
2 (LV-LA) 3683 33.0 � 31.1 �44.3 � 498.4 61 � 35

J. Hwang et al. / Applied Ergonomics 44 (2013) 636e642 639
in the data analysis. In general, the final clusters had distinct
characteristics without any difficulty of interpretation. According to
the weight scores that explained the proportion of the data rep-
resenting the clusters, the kinematic variables of angular velocity
and angular acceleration best characterized the clusters of joint
motions (ranging from 0.7 to 1), whereas the subjective variable of
comfort and discomfort rating was less important except for F/E of
the head, F/E of the upper arm, F of the lower arm, and F/E and R/L-
LF of the trunk. The demographic variables of age and gender were
also less important except for F of the lower arm and AB/AD and ER/
IR of the upper leg.

Each motion had either two or three clusters. The low, moder-
ate, and high levels of angular velocity and acceleration were
categorized for each joint motion based on the absolute values-
comparison among clusters. The motions of F/E and R/L-R of the
head, AB/AD and ER/IR of the upper arm, F of the lower arm, F/E and
UD/RD of the hand, AB/AD and ER/IR of the upper leg, F of the lower
leg, and PF/DF and EV/IV of the foot were classified into two clusters
that had the motion patterns of either “low velocity and low ac-
celeration (LV-LA)” or “high velocity and high acceleration (HV-
HA)” according to the absolute magnitudes of angular velocity and
angular acceleration. However, the other six motions of R/L-LF of
the head, F/E of the upper arm, F/E, R/L-LF, and R/L-R of the trunk,
and F/E of the upper leg were classified into three clusters that had
the motion patterns of either “low velocity and moderate acceler-
ation (LV-MA),” “moderate velocity and high acceleration
(MV-HA),” “moderate velocity and moderate acceleration
(MV-MA),” or “high velocity and low acceleration (HV-LA).”

Generally, the participants revealed larger discomfort at mod-
erate or high accelerations than at low acceleration regardless of
themagnitude of the angular velocities. For example, the subjective
ratings were 96% in cluster 1 (HV-HA) for EV/IV of the foot and 80%
and 72% in clusters 1 (MV-MA) and 3 (LV-HA) for F/E of the trunk,
respectively.

Table 3 displays the proportion of demographic variables for
each joint motion. Since demographic variables were categorical
(nominal) data, cross-tab analysis was conducted to assess the
distribution of age and gender within each cluster for joint motions
(Table 3). In overall, most joint motions showed that there was no
consistent pattern for age and gender distribution between clus-
ters. It indicated that age and gender were generally not primary
variables in developing clusters for each joint motion.

The ANOVA results indicate that the ROM sections were sig-
nificantly different between clusters for each joint motion
(p < 0.0001). Fig. 2 displays the sections of the full ROM for each
joint motion. Among the joint motions with three clusters, cluster 1



Table 3
Proportion of demographic variables for each joint motion. The motions with two clusters have only LV-LA and HV-HA, whereas those with three clusters have LV-MA, HV-LA,
MV-MA, and MV-HA.

Segment Motion Demographic variable Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)

Head F/E Young vs. Old 56.5 43.5 31.0 69.0 e

Male vs. Female 56.7 43.3 31.4 68.6 e

R/L-LF Young vs. Old 51.2 48.8 46.8 53.2 47.7 52.3
Male vs. Female 65.5 34.6 21.6 78.4 66.1 33.9

R/L-R Young vs. Old 55.3 44.7 19.3 80.7 e

Male vs. Female 46.5 53.5 62.8 37.2 e

Upper arm F/E Young vs. Old 43.5 56.5 50.8 49.2 62.6 37.4
Male vs. Female 38.2 61.8 76.6 23.4 35.5 64.5

AB/AD Young vs. Old 48.7 51.3 51.8 48.2 e

Male vs. Female 47.6 52.4 52.5 47.5 e

ER/IR Young vs. Old 33.0 67.0 73.2 26.8 e

Male vs. Female 51.8 48.3 43.4 56.6 e

Lower arm F Young vs. Old 46.1 53.9 51.5 48.6 e

Male vs. Female 25.5 74.5 72.7 27.3 e

Hand F/E Young vs. Old 48.9 51.2 42.3 57.7 e

Male vs. Female 57.2 42.8 67.2 32.8 e

UD/RD Young vs. Old 54.3 45.7 32.0 68.0 e

Male vs. Female 54.7 45.3 43.4 56.6 e

Trunk F/E Young vs. Old 72.4 27.6 22.5 77.5 50.3 49.7
Male vs. Female 61.7 38.3 40.4 59.6 37.4 62.6

R/L-LF Young vs. Old 29.2 70.8 60.7 39.3 65.7 34.4
Male vs. Female 56.1 43.9 40.8 59.2 56.8 43.2

R/L-R Young vs. Old 49.5 50.5 60.8 39.3 38.8 61.2
Male vs. Female 47.2 52.8 53.2 46.8 45.2 54.8

Upper leg F/E Young vs. Old 51.2 48.9 49.3 50.8 50.7 49.3
Male vs. Female 62.3 37.7 39.1 60.9 45.1 54.9

AB/AD Young vs. Old 48.1 51.9 50.2 49.8 e

Male vs. Female 26.9 73.1 85.0 15.0 e

ER/IR Young vs. Old 11.3 88.7 76.3 23.7 e

Male vs. Female 56.4 43.6 45.5 54.5 e

Lower leg F Young vs. Old 59.0 41.0 42.0 58.0 e

Male vs. Female 61.1 38.9 37.1 62.9 e

Foot PF/DF Young vs. Old 48.5 51.5 52.7 47.3 e

Male vs. Female 52.5 47.5 50.6 49.4 e

EV/IV Young vs. Old 80.7 19.4 48.5 51.6 e

Male vs. Female 80.7 19.4 55.2 44.9 e
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(LV-MA) or (MV-MA)were generally relatedwith the negative ROM
sections of extension (E), left lateral flexion (L-LF), and left rotation
(L-R), whereas cluster 3 (MV-HA) or (LV-HA) were related to the
positive ROM sections of flexion (F), right lateral flexion (R-LF), and
right rotation (ReR). Cluster 2 (HV-LA) was generally associated
with the middle ROM sections around neutral positions of the body
segments between negative and positive sections. For the joint
motions with two clusters, cluster 1 (LV-LA) was related to negative
and neutral ROM sections of extension (E), left rotation (L-R),
adduction (AD), internal rotation (IR), radial deviation (RD), dorsi-
flexion (DF), and inversion (IV), while cluster 2 (HV-HA) was
associated with the positive ROM sections of the opposite sides of
the motions.

4. Discussion

The purpose of the present study is to identify joint motion
patterns and to use cluster analysis to provide the sections of the
ROM that have similar kinematic, demographic, and subjective
characteristics for each joint motion. The joint motions had either
two or three clusters on the basis of the cluster selection criteria
established in the data analysis.

The R/L-LF of the head, F/E of the upper arm, F/E, R/L-LF, and R/L-
R of the trunk, and F/E of the upper leg belonged to three cluster
groups. These joint motions had the initial phase with low velocity
and moderate acceleration in cluster 1 and the terminal phase with
low velocity and high acceleration in cluster 3. These phases of
clusters 1 and 3 might be associated with considerable muscle
forces because angular acceleration had a positive correlation with
forces due to the Newtonian laws of physics (Marras andWongsam,
1986). The large contractions in agonist muscles would generate an
acceleration of the body segments during the initial phase of mo-
tion, while the large co-contractions of agonist and antagonist
muscles would cause a deceleration during the terminal phase of
motion (Hagood et al., 1990). The motion pattern of high velocity
and low acceleration was found in the midphase of motion in
cluster 2 because both the decreased contraction in agonist muscles
and the increased contraction in antagonist muscles couldmaintain
the fast but rather constant angular velocity of the segments with
low acceleration (Hagood et al., 1990). Thus, it can be said that
muscles require large contractions to start and stop motions with
moderate and high accelerations at both ends of the ROM, as shown
in Fig. 1. However, muscles with relatively small contractions are
necessary in the middle ROM sections (cluster 2), which have fast
but smooth motion patterns around the neutral positions of the
segments.

F/E and R/L-R of the head, AB/AD and ER/IR of the upper arm, F of
the lower arm, F/E and UD/RD of the hand, AB/AD and ER/IR of the
upper leg, F of the lower leg, and PF/DF and EV/IV of the foot had the
classifications of two clusters. Most clusters of high velocity and
high acceleration generally belonged to the positive ROM sections
of flexion (F), right rotation (ReR), abduction (AB), external rotation
(ER), and ulnar deviation (UD), whereas the clusters of low velocity
and low acceleration were revealed in the negative and middle (or
neutral) ROM sections. The bone structure and connective tissue at
the joints can restrict the motions in the negative ROM sections,
which have relatively narrower ROM than that in the positive
sections. For example, the head, which can flex up to 64�, has
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enough ROM to accelerate it in the positive section, but it can
extend only up to �49�, which may not be sufficient for its accel-
eration. As mentioned earlier, however, the body segments seemed
to require more muscle contractions in the positive ROM sections
due to high acceleration than those in the negative and neutral
sections. This agrees with the findings of Armstrong et al. (1984)
that postures at extreme angles significantly influence physical
stress.

The subjective discomfort ratings accounted for only F/E of the
trunk and EV/IV of the foot. Unlike the other body segments, the
trunk is a body segment that may be large enough for participants
to feel discomfort even in a simple swaying motion because of its
mass. However, the reason that the participants feel discomfort in
the eversion and inversion of the foot may be due to the fact that
those are rather difficult motions to perform continuously in
a narrow ROM. Both trunk and foot motions also had large sub-
jective ratings in the clusters of moderate and high accelerations,
which might require large muscular effort and thus cause
discomfort.

Similar to the subjective ratings, the demographic variables, age
and gender, showed no apparent and consistent effects on the
motion patterns including angular velocity and angular accelera-
tion (Table 3). Such swayingmotions without any external loadmay
be too simple for the participants to perform, so that they feel
rather comfortable with those motions. Thus, the confounding ef-
fect of age and gender on kinematics variables was considered to be
less significant.

The results showed that several particular joint motions had
considerable outliers due to the misunderstanding of instructions
and unsmooth motions by old participants. For example, hand F/E
had the lowest datasets as 3535 because five participants failed to
follow the right instructions such as comfortable and consistent
self-selected speed during the joint motion. In addition, upper arm
ER/IR, trunk R/L-LF, lower leg F and foot EV/IV showed 3737 data-
sets. It was found that several old participants performed
unsmooth motions for particular joint motions, so this lead to the
outliers of angular acceleration.
The results of this study could provide new types of dynamic
ROM sections compared to the other existing methods. For motions
with two clusters, the overlapped regionwas selected as the neutral
ROM ranges regarding the typical motion pattern. For motions with
three clusters, cluster 2 regions were selected as the neutral ROM
ranges. The neutral ROM ranges for each joint motion was head F/E
(20�w33�), RL-LT (�19�w20�), and R/L-R (25�w49�); upper arm F/
E (�4�w91�), AB/AD (50�w79�), and ER/IR (�45�w28�); lower arm
F (60�w100�); hand F/E (13�w19�) and UD/RD (5�w7�); trunk F/E
(�17�w23�), R/L-LF (�14�w15�), and R/L-R (�10�w15�); upper leg
F/E (2�w62�), AB/AD (2�w35�), and ER/IR (�7�w18�); lower leg F
(75�w81�); foot PF/DF (�14�w�6�) and EV/IV (�9�w�6�). Those
neutral ROM ranges tended to have more positive deviations than
the existing methods. For example, RULA and REBA showed
the �15�w15� deviation for neutral section for wrist F/E, whereas
our result showed 13�w19�. For head F/E, REBA showed 0�w20�

while our results showed 20�w33�. This might be due to the dif-
ferent characteristics of motion such as angular velocity and ac-
celeration and physiological response such as muscle length-
changes compared to the static postures.

5. Conclusion

Cluster analysis is used to determine ROM sections for 18 mo-
tions of 8 segments that have similar joint motion patterns. The
joint motions are mainly characterized by the kinematic variables
angular velocity and angular acceleration, unlike the subjective
variables comfort and discomfort and the demographic variables
age and gender. The sections around both ends of the ROM show
moderate and high accelerations due to muscle contractions,
whereas the sections around a neutral range in the ROM display
fast and smooth motion with low acceleration. This study quanti-
tatively showed the difference of ROM sections between dynamic
motions and static postures in terms of developing the postural
analysis tools. This finding could be useful to design dynamic work
tasks and develop advanced dynamics postural analysis tools for
the future study.
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The limitations of this study include the exclusion of physio-
logical assessments such as muscle activities to identify the phys-
ical load for each ROM section. Moreover, the participants
performed simple swing motions at their own speeds because self-
selected speeds might be more appropriate to evaluate their
functional capability in daily life (Mcgregor et al., 1997). However,
these motions do not fully represent the motions in daily and
workplace activities, so it should be cautious to apply the findings
in tasks that involve restricted range of motion, longer duration and
controlled speed. In addition, since anatomical variability could
affect the motion and force patterns, a probabilistic biodynamic
model would be recommended in the future to control inter-person
and motion-dependent variability (Li and Zhang, 2010).
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