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Abstract

Background: In computational biology, a novel knowledge has been obtained mostly by identifying ‘intra-relation,’
the relation between entities on a specific biological level such as from gene expression or from microRNA
(miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex
cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g.
miRNA and its target genes. The ‘inter-relation’ between different levels of genomic data can be constructed from
biological experimental data as well as genomic knowledge.

Methods: Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic
data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical
outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic
data without considering of inter-relationship information between genomic features. In this paper, we propose a
new integrative framework that combines genomic dataset from gene expression and genomic knowledge from
inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study.

Results: In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term
survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the
accuracy of our predictive model increases because of incorporation of information fused over genomic dataset
from gene expression and genomic knowledge from inter-relation between miRNA and gene expression.

Conclusions: In the present study, the intra-relation of gene expression was reconstructed from inter-relation
between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding
suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is
substantially useful for elucidating the cancer phenotype.

Introduction
DNA microarrays have already been widely used for the
classification of tumor subtypes or clinical outcomes for
the diagnosis, treatment, or prognosis of cancer for
many years [1-6]. In addition to gene expression, there

have been attempts at cancer clinical outcome predic-
tion using different levels of genomic data such as copy
number, DNA methylation, or miRNA [7-11]. Despite
these efforts, however, the elucidation of cancer pheno-
types remains problematic since the cancer genome is
neither simple nor independent but is complicated and
dysregulated by multiple mechanisms in the biological
system [12,13]. Previously, we have proposed a graph-
based framework that integrates with multi-layers of
genomic data, copy number alteration, DNA methyla-
tion, gene expression, and miRNA expression, for
the prediction of clinical outcomes in glioblastoma
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multiforme (GBM) and serous cystadenocarcinoma [14].
The strengths of our approach were also highlighted as
initiating its application using multiple scales and com-
putation efficiency [15].
In computational biology, a novel knowledge has been

obtained mostly by identifying ‘intra-relation,’ the rela-
tion between entities on a specific biological level such
as from gene expression or from microRNA (miRNA)
and many such researches have been successful
[14,16,17]. However, intra-relations are not fully explain-
ing complex cancer mechanisms because the inter-rela-
tion information between different levels of genomic
data is missing, e.g. miRNA and its target genes. The
‘inter-relation’ between different levels of genomic data
can be constructed from biological experimental data as
well as genomic knowledge.
There are possible inter-relationships between the

genomic features belonging to different levels of geno-
mic data such as ‘miRNA-target genes,’ ‘copy number
alteration region-genes located in the altered region,’
‘DNA methylation site-specific genes regulated by pro-
moter regions,’ etc. However, the limitation of previous
work was that we integrated with multi-layers of geno-
mic data for cancer clinical outcome prediction without
considering of inter-relationship information between
genomic features [14]. We assume that accuracy of pre-
diction model increase when considering of inter-rela-
tionship between different levels of genomic data
because of incorporation of information fused over
genomic dataset and genomic knowledge, providing an
enhanced global view on interplays in cancer mechan-
isms [12,18]. Therefore, when integrating multi-layers of
genomic data, it will be desirable that a framework will
be capable of containing the inter-relationships between
genomic features belonging to different layers of the
biological system.
In this paper, we propose a new integrative framework

that combines genomic dataset from gene expression
and genomic knowledge from inter-relation between
miRNA and gene expression for the clinical outcome
prediction as a pilot study. miRNAs are involved in the
post-transcriptional regulation of genes either by indu-
cing degradation of the transcript of their multiple tar-
gets or by repressing the translation of mRNA into
protein [19,20]. In addition, miRNAs regulate many
genes associated with different biological processes such
as development, stress response, apoptosis, proliferation,
and tumorigenesis [21-25]. In order to demonstrate the
validity of the proposed method, the prediction of short-
term/long-term survival for 82 patients in GBM was
adopted as a base task. GBM is the most common and
aggressive primary brain tumor in adults [26], and
notorious for its tendency to recur [27]. Despite recent
advances in the molecular pathology of GBM, the

underling molecular mechanisms associated with clinical
outcome are still poorly understood [28].
The remainder of the paper is organized as follows.

Data description and methods for prediction based on
intra-relation among mRNAs and prediction based on
inter-relation from miRNA to mRNA are explained in
the Materials and Methods section. In the Results sec-
tion, experimental results and biological implications are
provided to demonstrate the validity and effectiveness of
our proposed approach. Finally, we discuss the meaning
of our study and future works in the last section.

Materials and methods
Data
Normalized datasets were retrieved from the Cancer
Genome Atlas (TCGA) data portal (http://tcga-data.nci.
nih.gov/). A binary classification problem was set using
the survival information from patient. In the classifica-
tion of short-term or long-term survival, ‘long-term’
represents samples derived from patients who survived
longer than 24 months [29]. The total 82 patients’
records were available across the miRNA and gene
expression data sets (N = 82), in which 54 were short-
term survival while the remaining were long-term
survival.

Retrieving mRNA targets of miRNA
There is a many-to-many relationship between miRNAs
and mRNAs since a single miRNA targets multiple
mRNAs or a single mRNA is targeted by multiple miR-
NAs. In order to get target relations between miRNA
and mRNA, we used miRecords which is integrated
resources of miRNA that store target interactions pro-
duced by 11 established miRNA target prediction pro-
grams [30]. We created 10 variations for predicted
target pairs between miRNA and genes by considering
the number of positive voters from the included algo-
rithms by miRecords (Additional file 1). Since most of
the evaluation results from these variations were largely
comparable, the most representative variation # 6 in
Additional file 1 was used to describe the overall study
results in the following sections.

Prediction based on intra-relation among mRNAs
We used a graph-based semi-supervised learning (SSL) as
a classification algorithm, which is a halfway learning
scheme between supervised and unsupervised learning
[31-34]. The graph-based SSL takes advantage of compu-
tational efficiency and representational ease for the biolo-
gical system. The learning time of graph-based SSL is
nearly linear with the number of graph edges while the
accuracy remains comparable to the kernel-based meth-
ods that suffer from the relative disadvantage of a longer
learning time [16,35]. In addition, the interpretation of
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biological phenomena can be improved because of the
graph structure [36-38], which naturally fits into the
graph based SSL.
In this study, the entity of intra-relation or inter-rela-

tion is a patient. We define the intra-relation as a graph
constructed based on single genomic data alone such as
gene expression data. On the other hands, we define the
inter-relation as a graph constructed based on relation-
ship between different levels of genomic data such as
gene expression and miRNA data. If two patients’ sam-
ples were more closely related than to others, we
assumed that the clinical outcomes of those two patients
were more likely to be similar. Thus, clinical outcome
prediction can be done by considering similarities
between patient samples. A natural method of analyzing
relationships between entities is a graph, where nodes
represent patients and edges show their possible

relations. Figure 1 (A) represents an example graph,
which was conducted using the gene expression. An
annotated patient is labeled either by ‘-1’ or ‘1’, indicat-
ing the two possible clinical outcomes, either ‘short-
term survival’ or ‘long-term survival.’ In order to predict
the label of the unannotated patient ‘?’, the edges con-
nected from/to the patient play an important role in
influencing propagation between the patient and its
neighbors. This idea can be easily formulated using
graph-based semi-supervised learning [34]. Edges repre-
sent relations, more specifically similarities between
patients that may be extracted from different genomic
data of gene expression or miRNA. Different types of
data produce different graphs. Consequently, clinical
outcome prediction can benefit by integrating diverse
graphs from genomic data or genomic knowledge, rather
than relying only on single genomic data that may have

Figure 1 Example model of the original, damaged, reconstructed, and augmented graphs. (A) GO: Original graph from gene expression
(B) GD50: Gene expression graph with 50 percent of damaged edges (C) GR: Reconstructed graph via inter-relationship between miRNA and
gene expression. Red lines represent edges from inter-relation and dashed lines shows the edges from the original graph. (D) GA: Augmented
graph by combining 50 percent of damaged graph and reconstructed graph
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possible limitations, i.e. incomplete information and
noise. Technically, the data-setup of our experiment for
the binary classification can be rephrased as {xn, yn}Nn=1
where xn ∈ Rd (d is the number of features and N is the
number of patients) and yn ∈ {−1, 1} .
Graph-based semi-supervised learning In the graph-

based SSL, a patient xi (i = 1, ..., n) is represented as a
node i in a graph, and the relationship between patients
is represented by an edge. The edge strength from each
node j to each other node i is encoded in element wij of
a n × n symmetric weight matrix W. A Gaussian func-
tion of Euclidean distance between patients was used to
state connection strength:

wij =

⎧⎪⎨
⎪⎩
exp

(
−(xi − xj)

T(xi − xj)

σ 2

)
if i ∼ j,

0 otherwise.

(1)

Nodes i, j are connected by an edge if i is in j’s k-
nearest-neighborhood or vice versa. The labeled nodes
have labels yl Î {-1, 1}, whereas the unlabeled nodes
have zeros yu = 0. An output of graph-based SSL is an
n-dimensional real-valued vector f = [fl

Tfu
T]T = (f1, ..., fl,

fl+1, ..., fn = l+u)
T, which can be thresholded to create

label predictions on fl = f1, ..., fn after learning. Graph-
based SSL consists of two main conditions, which are
loss condition and smoothness condition. It is assumed
that fi should be close to the given label yi in labeled
nodes as a loss condition, and overall, fi should not be
too different from the fi of adjacent nodes as a smooth-
ness condition. One can obtain f by minimizing the fol-
lowing quadratic functional [31,33,34]:

min
f

(f − y)T(f − y) + μf TLf (2)

where y=(y1, ..., yl, 0, ... 0)
T, and the matrix L, called

the graph Laplacian matrix [39], is defined as L = D - W
where D = diag(di), di= ∑jwij. The parameter µ trades off
loss versus smoothness. The solution of this problem is
obtained as

f = (I + μL)−1y (3)

where I is the identity matrix.

Prediction based on inter-relationship from miRNA to
mRNA
The main problem of this study is to develop an ade-
quate measure to calculate the similarity matrix contain-
ing inter-relationship information between miRNA and
gene expression. There are many measures to construct
the similarity matrix for graph-based semi-supervised
learning such as k-NN graphs, ε -NN graphs, tanh-

weighted graphs, exp-weighted graphs, etc [32]. For
these methods, there is an assumption that the length of
vector from two matrices or matrix itself should be
same in order to calculate the similarity. However, it is
difficult to calculate the similarity matrix containing
inter-relationship information between miRNA and tar-
get genes because the length of vector from two
matrices is different, for example 534 miRNAs and
12,043 genes in miRNA and gene expression, respec-
tively (Figure 2 (A)). Thus, a new measure for calculat-
ing the similarity matrix containing inter-relationship
information from different levels of genomic data has
been developed in this study (Figure 2 (B)).
MicroRNA dataset is represented by i patients (i = 1, ...,

N) and l miRNAs (l = 1, ..., Nmi) and gene expression data-
set is represented by j patients (j = 1, ..., N) and m genes
(m = 1, ..., NG) (Figure 2 (A)). The edge strength from
each miRNA patient to each gene expression patient is
encoded in element wij of an NxN weight matrix. A weight
matrix containing inter-relationship information between
miRNA and target genes is obtained by

fij =
Nmi∑
l=1

NG∑
m=1

miRNA(i, l) • gene(j,m) (4)

where m-th gene is targeted by l-th miRNA. After
calculating fij, each element is normalized and trans-
formed by

Zij =
fij − f

std(f )
(5)

wij =
1

1 + e−Zij
(6)

Integration of multiple graphs In order to combine
the graph from gene expression and the reconstructed
graph via inter-relationship, two graphs can be inte-
grated from finding optimum combination coefficients.
Information from each graph is regarded as partially
independent from and partly complementary to others.
Reliability might be improved by integrating all available
heterogeneous data using the method proposed by
Tsuda et al. (2005), which has been re-validated on the
extended problem of protein function classification [17]
and clinical outcome prediction using multi-levels of
genomic data [14]. Based on the method, the integration
of multiple graphs was conducted through finding an
optimum coefficient of the linear combination for the
individual graphs. This corresponds to finding the com-
bination coefficients a for the individual Laplacians of
the following mathematical formulation:

Kim et al. BMC Systems Biology 2013, 7(Suppl 3):S8
http://www.biomedcentral.com/1752-0509/7/S3/S8

Page 4 of 11



min
α

yT(I +
K∑
k=1

αkLk)−1y,
∑
k

αk ≤ μ (7)

where K is the number of graphs and Lk is the corre-
sponding graph-Laplacian of graph Gk. Similar to the
output prediction for single graphs, the solution is
obtained by

f = (I +
K∑
k=1

αkLk)−1y. (8)

Experimental setting
In order to evaluate the effect of inter-relation betwee n
miRNA and target genes, the intra-relation of gene
expression was reconstructed from inter-relation
between miRNA and gene expression. We defined the 4
cases of graph for demonstrating the validity of the pro-
posed method (Figure 1).

(A) Original graph from gene expression (GO): We
made an original graph from gene expression data
where nodes depict patients and edges represent
their possible relations.
(B) Damaged graph from the original graph (GD):
We randomly reduced the edges from the original
graph, GO, in order to make the incomplete graph.
GD50 means the gene expression graph with 50 per-
cent of damaged edges.

(C) Reconstructed graph via inter-relationship (GR):
Reconstructed graph of gene expression was gener-
ated via inter-relationship between miRNA and gene
expression.
(D) Augmented graph (GA): An augmented graph
was generated by combining damaged graph (GD)
from the original graph and reconstructed graph
(GR) from inter-relation.

Since genomic data sources are generally high dimen-
sional and noisy, and contain many redundant features,
which may incur computational difficulty and low accu-
racy, a Student t-test based feature selection method
was used [40]. Even though there are many feature
selection techniques such as filter, wrapper, and
embedded method [41], a simple univariate feature
selection method was used in order to emphasize not
the effect of feature selection but the effect of integra-
tion with inter-relationship between miRNAs and target
mRNAs.

Results
The receiver operating characteristic (ROC) curve plots
sensitivity (true positive rate) as a function of 1-specifi-
city (false positive rate) for a binary classifier system as
its discrimination threshold is varied [42]. For each pro-
blem, we calculated area under the curve (AUC) of
ROC as a performance measure. Each experiment is
repeated three times in order to estimate the variance of

Figure 2 Graphical data description. (A) Data structure of miRNA, gene expression and their target relation (B) Similarity matrix containing
inter-relation between miRNA and gene expression
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the measurement values and five-fold cross-validation
was conducted in order to overcome over-fitting. The
Wilcoxon signed-rank test was used to assess the signifi-
cance level of difference in performance between the
results of damaged graphs and augmented graphs [43].

Experimental results
Figure 3 shows the prediction performance on the clas-
sification of short-term and long-term survival for 4
cases of proposed graphs. The AUCs of the 4 graphs
(original graph from gene expression data (GO),
damaged graph from the original one (GD), recon-
structed graph via inter-relation between miRNA and
mRNA (GR), and augmented graph by damaged graph
and reconstructed graph (GA)) are shown in the y axis
and the percent of damaged edges are represented in
the x axis. The main result of our study is that the pre-
diction performance was improved by integrating the
original gene expression (GO) and the reconstructed
graph via inter-relation between miRNA and mRNA
(GR) (Figure 3). We found that the opportunity for suc-
cess in prediction of clinical outcomes in GBM was
increased when the prediction was based on the integra-
tion of genomic data and genomic knowledge based on
inter-relationship.
As the percent of damaged edges in gene expression

graph increased, the AUCs of damaged graph (GD) are
getting decreased sharply compared to the original
graph from gene expression data (GO) (Figure 3).

However, the performances of the augmented graph
(GA) showed robust results even though 90 percent of
edges were reduced from the original graph. The perfor-
mance of GA, a graph combining biological experimental
data and genomic knowledge, is higher than the one of
GO, an original graph from gene expression only, from 0
to 30 percent of damaged edges (Figure 3). This sug-
gests that genomic knowledge is complementary to the
prediction power of explaining cancer phenotype even
though biological experimental data such as gene
expression has incomplete information.
The significance level of difference in performance

between the results of damaged graph and augmented
graph was conducted using Wilcoxon signed-rank test
(Table 1). The level of significance increased as long as
the percentage of damaged edges increased. Figure 4
shows a gradual increase in AUC by augmented graph.
Dark blue bar represents the results from damaged
graph and brown bar depicts the one from augmented

Figure 3 Performance comparison of 4 cases of graphs. GO: Original graph from gene expression (brown-dashed line), GD: Gene expression
graph with damages (blue line), GR: Reconstructed graph via inter-relationship between miRNA and mRNA (dark green-dashed line), GA:
Augmented graph by damaged graph and reconstructed graph (red line)

Table 1 Significance test of the performances between
GD and GA

Percent of damaged edges AUC of GD AUC of GA P-value

10% 0.852 0.864 1.80e-03

30% 0.844 0.860 2.10e-03

50% 0.816 0.836 1.91e-04

70% 0.760 0.816 2.38e-04

90% 0.648 0.784 2.36e-05
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graph. Light blue bars indicate the AUC of the original
graph and reconstructed graph, respectively. This pro-
vides improving performance from the augmented
knowledge based on inter-relation between mRNA and
miRNA.

Biological implication
Through the proposed model, the molecular signatures
of miRNA and target genes, most associated with sur-
vival, were selected. First, miRNAs and gene features
were separately selected from the prediction model
based on intra-relation using independent data set,
miRNA expression and gene expression, respectively.
Then, miRNA and target gene pairs were selected
from the prediction model based on inter-relation
between miRNA and gene expression data. Figure 5
represents a heatmap of fold changes of selected miR-
NAs and genes, which are also belonging to selected
miRNA-target gene pairs. The first column of Figure 5
shows the fold changes of gene expression from
selected 11 genes and remaining columns represent
the fold changes of miRNA expression from selected
19 miRNAs. Blue cell in the figure indicates that gene
expression or miRNA expression in the short-term
survival group is under-expressed compared to the
long-term survival group. Light blue cell in the heat-
map represents non-target relation between miRNA
and gene. Many of these miRNA and target gene pairs
affect critical biological processes that are frequently
dysregulated in cancer.

For instance, three miRNAs, hsa-mir-20a, hsa-mir-
106a, and hsa-mir-221, were also identified as miRNA
signatures that predicts survival in Glioblastoma [44].
Hsa-mir-20a and hsa-mir-106a miRNAs were classified
into the protective class and hsa-mir-221 was classified
into the risk class in the previous study as well [44].
The protective miRNAs were expressed at a higher level
in the long-term survival group compared to the short-
term survival group while the risky miRNAs were
expressed at a higher level in the short-term group than
in the long-term group. The risky and protective class
of these miRNAs supports the fact that their functions
being either promoting or inhibitory, respectively.
Under-expression of hsa-mir-106a has been shown to be
associated with poor patient survival in colon cancer
and glioma [45,46]. Target genes of hsa-mir-106a,
BDH1, UPP1, TUSC2, and KMO, were over-expressed
in the short-term survival group, which is a reverse pat-
tern of expression in hsa-mir-106a. These genes play
important roles that affect metabolic process, cell cycle,
or nucleotide catabolic process in several cancers
[47-50]. The miRNA cluster, which contains hsa-mir-
20a, was found to promote lung cancer growth in vitro,
activated by c-myc and promote tumor angiogenesis
[51]. HFE, one of the selected target genes of hsa-mir-
20a, has been found to be associated with immune
response in GBM and ovarian cancer [50,52]. Among
selected miRNA and target gene pairs, other pairs were
of interest because they could suggest some novel indir-
ect mechanisms in GBM tumorigenesis.

Figure 4 Improving performance from the augmented knowledge based on inter-relation between mRNA and miRNA. Dark blue bars
represent the results from damaged graph and brown bar represents the one from augmented graph. Light blue bars indicate the AUCs of the
original graph and reconstructed graph, respectively
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Figure 5 Heatmap of selected miRNA and target gene pairs. The first column shows the fold changes of gene expression from selected 11
genes and remaining columns represent the fold changes of miRNA expression from selected 19 miRNAs. Blue cells indicate that gene
expression or miRNA expression in the short-term survival group is under-expressed compared to the long-term survival group. Light blue cells
represent non-target relation between miRNA and gene.

Table 2 Description of the selected gene features between short-term and long-term survival group in GBM

Gene Region Function Up/
down

AUC_diff

RAGE 14q32.31 Renal tumor antigen/threonine kinase activity/transferase activity Up 0.028

ATAD3A 1p36.33 ATP binding/nucleotide binding Down 0.024

HEMK1 3p21.31 DNA binding/N-methyltransferase activity Up 0.012

KMO 1q43 Integral to membrane/kynurenine 3-monooxygenase activity Up 0.012

RBKS 2p23.2 D-ribose metabolic process/ribokinase activity Up 0.012

CCNJL 5q33.3 Nucleus/regulation of progression through cell cycle Down 0.008

LGALS8 1q43 Extracellular space/sugar binding Up 0.008

UPP1 7p12.3 Cytoplasm/nucleoside metabolic process/nucleotide catabolic process Up 0.008

BDH1 3q29 3-hydroxybutyrate dehydrogenase activity/metabolic process/mitochondrial inner membrane/
mitochondrial matrix

Up 0.004

HFE 6p22.1 Antigen processing and presentation/ immune response/ protein complex assembly Up 0.004

TUSC2 3p21.31 Cell cycle/cell proliferation/cell-cell signalling/negative regulation of progression through cell cycle Up 0.000

The gene lists in the first column were sorted by the AUC_diff, which calculated the difference between the original AUC with 11 gene features and the AUC
without one gene among 11 gene features.
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Table 2 describes the selected gene features between
short-term and long-term survival group. These gene
lists were sorted by the AUC_diff, which calculated the
difference between the original AUC with 11 gene fea-
tures and the AUC without one gene among 11 gene
features. The high value of AUC_diff means that the
contribution of the gene feature, being excluded for cal-
culating the AUC_diff, to the prediction model is high.
RAGE showed the highest AUC_diff, 0.028, and AUC_-
diff of ATAD3A, 0.024, was secondly high among gene
features (Table 2).
The RAGE pathway may play an important role in

STAT3 induction in glioma-associated microglia and
macrophages, a process that might be mediated through
S100B [53]. In addition, the under-expression of
ATAD3A may be involved in the chemosensitivity of oli-
godendrogliomas and the transformation pathway [54].

Comparison with other proposed methods for inter-
relationship matrix
Despite the difficulty of developing an adequate measure
to calculate the similarity matrix containing inter-rela-
tionship information between miRNA and gene expres-
sion, we implemented 4 measures, GR_1, GR_2, GR_3,
and GR_4, and compared with the proposed method,
GR_5, in order to assess the benefit of the proposed one.
GR_1 was calculated by multiplication of correlation
matrices from gene expression and miRNA expression.
The method of GR_2 was generated through the simple
addition of two vectors, genes and miRNAs, for contain-
ing inter-relationship. On the other hand, the method of
GR_3 was calculated by removing miRNAs and genes,
which were not belonging to the target relations, after
simple addition of two vectors, genes and miRNAs.
GR_4 was focused on a targeted gene and considered
multiple miRNAs targeting the specific gene when cal-
culating the inter-relationship. In contrast to GR_4,
GR_5, the proposed method in our study, was focused
on a miRNA and considered multiple target genes from
the specific miRNA.
Even though the performance of GR_2 itself showed

the best (AUC = 0.828), the performance of GA (AUC =
0.868), integrating GO (AUC = 0.856) and GR_5 (AUC =
0.796), showed the best in our comparison scheme
(Figure 6). This suggests that the method of GR_5 has
more partly complementary to the gene expression itself
than the others so that it improves the prediction power
when integrating with gene expression.

Conclusions
In the present study, the intra-relation of gene expres-
sion was reconstructed from inter-relation between
miRNA and gene expression for prediction of short-
term/long-term survival of GBM patients in order to

provide a preliminary insight on the question that is
how informative inter-relationship between miRNA and
gene expression is when different levels of genomic
dataset and valid genomic knowledge are available.
Based on our results, the accuracy of our predictive
model increases because of incorporation of information
fused over genomic dataset from gene expression and
genomic knowledge from inter-relation between miRNA
and gene expression. New evidence suggests that geno-
mic knowledge is complementary to the prediction
power of explaining cancer phenotype even though bio-
logical experimental data such as gene expression has
incomplete information. In addition, our finding sug-
gests that the utilization of external knowledge repre-
senting miRNA-mediated regulation of gene expression
is substantially useful for elucidating the cancer pheno-
type since miRNAs regulate many genes associated
with different biological processes such as develop-
ment, stress response, apoptosis, proliferation, and
tumorigenesis.
The present study underpins our on-going work. It is

expected that the next attempt will be more focused on
how to utilize the information from ‘intra-relation’, the
relation between different levels: from the genome level
to epigenome, transcriptome, proteome, and further
stretched to the phenome level. There might be other
possible intra-relations between different layers of

Figure 6 Comparison of other proposed methods . Four
measures, GR_1, GR_2, GR_3, and GR_4, were implemented and used
for calculating GA in order to assess the effect of the proposed
method, GR_5. The blue dotted line shows the AUC of original gene
expression (GO) and the orange dotted line represents the AUC of
miRNA data alone.
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genomic data such as ‘copy number alteration region -
genes located in the alteration region,’ ‘DNA methyla-
tion site - specific genes regulated by promoter regions,’
etc. Thus, when integrating multi-levels of genomic
data, it might be valuable that a framework will be cap-
able of containing the inter-relationships between geno-
mic features belonging to different layers of the
biological system as genomic knowledge. Even though
this study is limited to the prediction of short-term/
long-term survival in GBM as a base task, the proposed
framework can be applied to other cancer types or other
clinical outcomes such as grade, stage, metastasis, etc. In
addition, we could apply the proposed method to
another layer of ‘intra-relation’ based on miRNA expres-
sion profiles together with ‘intra-relation’ between
mRNAs.
Recently, TCGA has been generating the additional

cancer genomic data for about 20 to 25 tumor types as
the second phase of the project. With abundance in dif-
ferent types of genomic, clinical data and valid genomic
knowledge, our proposed framework will be valuable for
explaining the underlying tumorigenesis, eventually lead-
ing to more effective screening strategies and therapeu-
tic targets in many types of cancer.

Additional material

Additional file 1: Supplemental table

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DK and HS designed and developed the study and wrote the manuscript. SL
and JJG provided the experimental results and interpreted the results. HS
and JHK provided intellectual guidance and mentorship and wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIP) (No. 2010-0028631).
DK’s education grant was supported by the Ministry of Health and Welfare
(A112020) and by the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT & Future Planning (No. 2012M3A9D1054622).
HS would like to gratefully acknowledge support from the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIP)
(No. 2013R1A1A3010440/2010-0028631). In addition, we gratefully
acknowledge the TCGA Consortium and all its members for the TCGA
Project initiative, for providing samples, tissues, data processing and making
data and results available.

Declarations
The publication cost for this work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIP)
(No. 2010-0028631).
This article has been published as part of BMC Systems Biology Volume 7
Supplement 3, 2013: Twelfth International Conference on Bioinformatics
(InCoB2013): Systems Biology. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcsystbiol/supplements/7/S3.

Authors’ details
1Seoul National University Biomedical Informatics (SNUBI), Div. of Biomedical
Informatics, Seoul National University College of Medicine, Seoul 110799,
Korea. 2Systems Biomedical Informatics Research Center, Seoul National
University, Seoul 110799, Korea. 3Center for Systems Genomics, Pennsylvania
State University, University Park, Pennsylvania, USA. 4Department of Industrial
Engineering, Ajou University, San 5, Wonchun-dong, Yeoungtong-gu, 443-
749, Suwon, Korea. 5Translational Bioinformatics Lab (TBL), Samsung Genome
Institute (SGI), Samsung Medical Center, Seoul, Korea.

Published: 16 October 2013

References
1. Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, Lee P, Murphy S,

Dressman HK, Febbo PG, West M, et al: Patterns of gene expression that
characterize long-term survival in advanced stage serous ovarian
cancers. Clin Cancer Res 2005, 11(10):3686-3696.

2. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild A,
Iversen ES, Liao M, Chen CM, et al: Gene expression predictors of breast
cancer outcomes. Lancet 2003, 361(9369):1590-1596.

3. Roepman P, Wessels LF, Kettelarij N, Kemmeren P, Miles AJ, Lijnzaad P,
Tilanus MG, Koole R, Hordijk GJ, van der Vliet PC, et al: An expression
profile for diagnosis of lymph node metastases from primary head and
neck squamous cell carcinomas. Nat Genet 2005, 37(2):182-186.

4. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL,
van der Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling
predicts clinical outcome of breast cancer. Nature 2002,
415(6871):530-536.

5. Fan X, Shi L, Fang H, Cheng Y, Perkins R, Tong W: DNA microarrays are
predictive of cancer prognosis: a re-evaluation. Clinical cancer research: an
official journal of the American Association for Cancer Research 2010,
16(2):629-636.

6. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification
of cancer: class discovery and class prediction by gene expression
monitoring. Science 1999, 286(5439):531-537.

7. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D,
Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human breast
and colorectal cancers. Science 2007, 318(5853):1108-1113.

8. Myllykangas S, Tikka J, Bohling T, Knuutila S, Hollmen J: Classification of
human cancers based on DNA copy number amplification modeling.
BMC medical genomics 2008, 1:15.

9. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-
Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression
profiles classify human cancers. Nature 2005, 435(7043):834-838.

10. Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabro E,
Croce CM, Pastorino U, Sozzi G: MicroRNA signatures in tissues and
plasma predict development and prognosis of computed tomography
detected lung cancer. Proc Natl Acad Sci USA 2011, 108(9):3713-3718.

11. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J,
Barretina J, Boehm JS, Dobson J, Urashima M, et al: The landscape of
somatic copy-number alteration across human cancers. Nature 2010,
463(7283):899-905.

12. Hanash S: Integrated global profiling of cancer. Nature reviews Cancer
2004, 4(8):638-644.

13. Chin L, Gray JW: Translating insights from the cancer genome into
clinical practice. Nature 2008, 452(7187):553-563.

14. Kim D, Shin H, Song YS, Kim JH: Synergistic effect of different levels of
genomic data for cancer clinical outcome prediction. J Biomed Inform
2012, 45(6):1191-1198.

15. Lussier YA, Li H: Breakthroughs in genomics data integration for
predicting clinical outcome. J Biomed Inform 2012, 45(6):1199-1201.

16. Tsuda K, Shin H, Scholkopf B: Fast protein classification with multiple
networks. Bioinformatics 2005, 21(Suppl 2):ii59-65.

17. Shin H, Lisewski AM, Lichtarge O: Graph sharpening plus graph
integration: a synergy that improves protein functional classification.
Bioinformatics 2007, 23(23):3217-3224.

18. Croce CM: Oncogenes and cancer. The New England journal of medicine
2008, 358(5):502-511.

19. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell
2009, 136(2):215-233.

Kim et al. BMC Systems Biology 2013, 7(Suppl 3):S8
http://www.biomedcentral.com/1752-0509/7/S3/S8

Page 10 of 11

http://www.biomedcentral.com/content/supplementary/1752-0509-7-S3-S8-S1.docx
http://www.biomedcentral.com/bmcsystbiol/supplements/7/S3
http://www.ncbi.nlm.nih.gov/pubmed/15897565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12747878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12747878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15640797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15640797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15640797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18477412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18477412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21300873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21300873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21300873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22910106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22910106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23117078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23117078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16204126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16204126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17977886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17977886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167326?dopt=Abstract


20. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 2004, 116(2):281-297.

21. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD,
Richardson JA, Olson EN: A signature pattern of stress-responsive
microRNAs that can evoke cardiac hypertrophy and heart failure. Proc
Natl Acad Sci USA 2006, 103(48):18255-18260.

22. Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic
lineage differentiation. Science 2004, 303(5654):83-86.

23. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N,
Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to
p53-mediated apoptosis. Mol Cell 2007, 26(5):731-743.

24. Marsit CJ, Eddy K, Kelsey KT: MicroRNA responses to cellular stress. Cancer
research 2006, 66(22):10843-10848.

25. Schmittgen TD: Regulation of microRNA processing in development,
differentiation and cancer. Journal of cellular and molecular medicine 2008,
12(5B):1811-1819.

26. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A,
Hahn WC, Ligon KL, Louis DN, Brennan C, et al: Malignant astrocytic
glioma: genetics, biology, and paths to treatment. Genes Dev 2007,
21(21):2683-2710.

27. Salcman M, Kaplan R: Intracranial tumors in adults. In Neurology of brain
tumors Williams & Wilkins, Baltimore Salcman M 1991, 1339-1352.

28. Saxena A, Robertson JT, Ali IU: Abnormalities of p16, p15 and CDK4 genes
in recurrent malignant astrocytomas. Oncogene 1996, 13(3):661-664.

29. Marko NF, Toms SA, Barnett GH, Weil R: Genomic expression patterns
distinguish long-term from short-term glioblastoma survivors: a
preliminary feasibility study. Genomics 2008, 91(5):395-406.

30. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T: miRecords: an integrated
resource for microRNA-target interactions. Nucleic acids research 2009,
37(Database issue):D105-110.

31. Chapelle O, Weston J, Scholkopf B: Cluster kernels for semi-supervised
learning. Advances in Neural Information Processing Systems (NIPS) 2003,
15(15):585-592.

32. Zhu X, Ghahramani Z, Lafferty J: Semi-supervised learning using Gaussian
fields and harmonic functions. In Proceedings of the Twenty-first
International Conference on Machine Learning (ICML) Washington, DC, AAAI
Press; 2003, 912-919.

33. Belkin M: Regularization and Semi-supervised Learning on Large Graphs.
In Proceedings of the 17th Annual Conference on Learning Theory (COLT) 3120
Lecture Notes in Computer Science 2004, 624-638.

34. Zhou D, Bousquet O, Weston J, Scholkopf B: Learning with local and
global consistency. Advances in Neural Information Processing Systems (NIPS)
2004, 16:321-328.

35. Shin H, Tsuda K: Prediction of Protein Function from Networks. Book:
Semi-Supervised Learning, Edited by Olivier Chapelle, Bernhard Sch¨olkopf,
Alexander Zien, MIT press 2006, , Chapter 20: 339-352.

36. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO,
Botstein D, Futcher B: Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol Biol Cell 1998, 9(12):3273-3297.

37. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N:
Module networks: identifying regulatory modules and their condition-
specific regulators from gene expression data. Nat Genet 2003,
34(2):166-176.

38. Ohn JH, Kim J, Kim JH: Genomic characterization of perturbation
sensitivity. Bioinformatics 2007, 23(13):i354-358.

39. Chung FRK: Spectral Graph Theory. Number 92 in Regional Conference
Series in Mathematics 1997.

40. Jafari P, Azuaje F: An assessment of recently published gene expression
data analyses: reporting experimental design and statistical factors. BMC
Med Inform Decis Mak 2006, 6:27.

41. Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in
bioinformatics. Bioinformatics 2007, 23(19):2507-2517.

42. Gribskov M, Robinson NL: Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching. Comput Chem 1996, 20(1):25-33.

43. Demsar J: Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research 2006, 7:1-30.

44. Srinivasan S, Patric IR, Somasundaram K: A ten-microRNA expression
signature predicts survival in glioblastoma. PLoS One 2011, 6(3):e17438.

45. Diaz R, Silva J, Garcia JM, Lorenzo Y, Garcia V, Pena C, Rodriguez R,
Munoz C, Garcia F, Bonilla F, et al: Deregulated expression of miR-106a

predicts survival in human colon cancer patients. Genes Chromosomes
Cancer 2008, 47(9):794-802.

46. Zhi F, Chen X, Wang SN, Xia XW, Shi YM, Guan W, Shao NY, Qu HT,
Yang CC, Zhang Y, et al: The use of hsa-miR-21, hsa-miR-181b and hsa-
miR-106a as prognostic indicators of astrocytoma. European Journal of
Cancer 2010, 46(9):1640-1649.

47. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J,
Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of
primary triple-negative breast cancers. Nature 2012.

48. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H,
Samayoa J, Bettegowda C, et al: The genetic landscape of the childhood
cancer medulloblastoma. Science 2011, 331(6016):435-439.

49. Durinck S, Ho C, Wang NJ, Liao W, Jakkula LR, Collisson EA, Pons J,
Chan SW, Lam ET, Chu C, et al: Temporal Dissection of Tumorigenesis in
Primary Cancers. Cancer discovery 2011, 1(2):137-143.

50. TCGA Network: Integrated genomic analyses of ovarian carcinoma.
Nature 2011, 474(7353):609-615.

51. Bonauer ASD: The microRNA-17-92 cluster: still a miRacle? Cell Cycle 2009,
8:3866-3873.

52. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P,
Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human
glioblastoma multiforme. Science 2008, 321(5897):1807-1812.

53. Zhang L, Liu W, Alizadeh D, Zhao D, Farrukh O, Lin J, Badie SA, Badie B:
S100B attenuates microglia activation in gliomas: possible role of STAT3
pathway. Glia 2011, 59(3):486-498.

54. Hubstenberger A, Labourdette G, Baudier J, Rousseau D: ATAD 3A and
ATAD 3B are distal 1p-located genes differentially expressed in human
glioma cell lines and present in vitro anti-oncogenic and chemoresistant
properties. Experimental Cell Research 2008, 314(15):2870-2883.

doi:10.1186/1752-0509-7-S3-S8
Cite this article as: Kim et al.: Intra-relation reconstruction from inter-
relation: miRNA to gene expression. BMC Systems Biology 2013 7(Suppl 3):
S8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kim et al. BMC Systems Biology 2013, 7(Suppl 3):S8
http://www.biomedcentral.com/1752-0509/7/S3/S8

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/14744438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17108080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17108080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14657504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14657504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17540598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17540598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17108120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18752632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18752632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22165053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8760309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8760309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18343632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18343632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18343632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16790051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16790051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17720704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17720704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16718863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16718863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18521848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18521848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20219352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20219352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21163964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21163964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21984974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21984974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21720365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19887902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21264954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21264954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18639545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18639545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18639545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18639545?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Data
	Retrieving mRNA targets of miRNA
	Prediction based on intra-relation among mRNAs
	Prediction based on inter-relationship from miRNA to mRNA
	Experimental setting

	Results
	Experimental results
	Biological implication
	Comparison with other proposed methods for inter-relationship matrix

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Author details
	References

