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In order to improve our understanding of cancer and develop multi-layered theoretical models for the
underlying mechanism, it is essential to have enhanced understanding of the interactions between
multiple levels of genomic data that contribute to tumor formation and progression. Although there exist
recent approaches such as a graph-based framework that integrates multi-omics data including copy
number alteration, methylation, gene expression, and miRNA data for cancer clinical outcome prediction,
most of previous methods treat each genomic data as independent and the possible interplay between
them is not explicitly incorporated to the model. However, cancer is dysregulated by multiple levels in
the biological system through genomic, epigenomic, transcriptomic, and proteomic level. Thus, genomic
features are likely to interact with other genomic features in the different genomic levels. In order to
deepen our knowledge, it would be desirable to incorporate such inter-relationship information when
integrating multi-omics data for cancer clinical outcome prediction. In this study, we propose a new
graph-based framework that integrates not only multi-omics data but inter-relationship between them
for better elucidating cancer clinical outcomes. In order to highlight the validity of the proposed
framework, serous cystadenocarcinoma data from TCGA was adopted as a pilot task. The proposed model
incorporating inter-relationship between different genomic features showed significantly improved
performance compared to the model that does not consider inter-relationship when integrating
multi-omics data. For the pair between miRNA and gene expression data, the model integrating miRNA,
for example, gene expression, and inter-relationship between them with an AUC of 0.8476 (REI)
outperformed the model combining miRNA and gene expression data with an AUC of 0.8404. Similar
results were also obtained for other pairs between different levels of genomic data. Integration of different
levels of data and inter-relationship between them can aid in extracting new biological knowledge by
drawing an integrative conclusion from many pieces of information collected from diverse types of
genomic data, eventually leading to more effective screening strategies and alternative therapies that
may improve outcomes.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Gene expression profiles have been widely used for predicting
clinical outcomes for the diagnosis, treatment, or prognosis of can-
cer for several years [1–5]. In addition to gene expression at the
transcriptome level, there have been many attempts at cancer clin-
ical outcome prediction using different levels of genomic data such
as copy number alteration (CNA) at the genomic level, miRNA
expression, or DNA methylation at the epigenomic level [6–10].
Despite these efforts, explaining cancer clinical outcomes remains
problematic since the cancer genome is neither simple nor inde-
pendent but is complicated and dysregulated by multiple levels
in the biological system through genomic, epigenomic, transcrip-
tomic, proteomic level, etc [11,12]. In order to improve our under-
standing of cancer and develop multi-layered theoretical models, it
will require an increased understanding of interactions between
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multiple levels of genomic data that contribute to tumor formation
and progression [11].

For overcoming these problems in cancer research, the emerg-
ing multi-omics data and clinical information from a collaborative
initiative such as the Cancer Genome Atlas (TCGA) have provided
many opportunities to explore the complex multi-layered genomic
basis of cancer for improving the ability to diagnose, treat, and pre-
vent cancer. TCGA is a large-scale collaborative initiative to im-
prove our understanding of multi-layered of molecular basis of
cancer. In addition, the International Cancer Genome Consortium
(ICGC) is another comprehensive collaborative initiative to charac-
terize multi-omics data in 50 different cancer types [13]. While the
TCGA and ICGC open unprecedented opportunities to deepen the
novel knowledge of the molecular basis of cancer [13–22], integra-
tive analysis of multi-omics data is still considered as one of
important problems to better explain cancer phenotype, further
providing an enhanced global view on interplays between different
levels of genomic data.

Previously, we proposed a graph-based framework that inte-
grates multi-omics data for predicting cancer clinical outcomes
in glioblastoma multiforme and serous cystadenocarcinoma in an
intermediate integration manner [23]. In addition, we have ex-
tended the previous framework to integrate genomic knowledge
such as pathway or Gene Ontology [24]. The intermediate integra-
tion approach has an advantage that a model preserves data-
specific properties by trying using optimally-weighted multiple
graphs or kernel matrices transformed from multi-omics data as
an intermediate level, compared to an early integration approach
that combines input matrices before modelling. On the other
hands, the late integration approach combines multiple predictive
models by training multi-omics data individually in order to obtain
the final model such as ensemble technique. The intermediate inte-
gration approach results into one prediction with one hypothesis,
whereas the late integration approach has multiple independent
hypotheses that have to be combined afterward. The strengths of
our proposed framework as an intermediate integration approach
were also highlighted as initiating its application using multiscale
‘omics analytics, flexibility, and computation efficiency [25]. How-
ever, one of the disadvantages of intermediate integration ap-
proach is that it is difficult to consider inter-relationship
between different levels of genomic data since each data is
Fig. 1. Inter-relationships between different levels of genomic data. There are six p
methylation, miRNA, and gene expression. Each genomic data can be converted into a g
transformed before the integration as an individual intermediate
level such as a graph.

There are possible multiple inter-relationships between differ-
ent levels of genomic data such as ‘copy number alteration region
– genes located in the altered copy number region,’ ‘miRNA – its
target genes,’ and ‘DNA methylation site – gene regulated by pro-
moter regions,’ etc (Fig. 1). In order to identify genes that are asso-
ciated with gene dosage, many integrative analyses between copy
number and gene expression have been conducted [26–29]. In
addition, miRNA as one of the important regulators of gene expres-
sion can be integrated with gene expression to identify the selec-
tive inhibition of translation or selective degradation [30–32].
Furthermore, in terms of epigenetic regulation, histone modifica-
tion or DNA methylation can serve to regulate gene expression in
cancer [33–36]. The limitation of previous work was that we inte-
grated multi-omics data for cancer clinical outcome prediction
without considering inter-relationship between different levels of
genomic features [23]. When integrating inter-relationship be-
tween different levels of genomic features, we assume that the pre-
diction accuracy for cancer clinical outcome increases because of
information fused over multiple genomic dataset and inter-rela-
tionship between them, providing an improved global view on
interplays between different genomic levels in cancer mechanisms
[11,37]. Thus, it will be desirable that a framework will be capable
of containing the inter-relationship between different levels of
genomic data when integrating multi-omics data.

In this study, we propose a new framework that integrates not
only multi-omics data but inter-relationship between them in the
intermediate integration manner for better elucidating cancer clin-
ical outcomes. In order to highlight the validity of the proposed
framework, serous cystadenocarcinoma data from TCGA was
adopted as a pilot task. Serous cystadenocarcinoma is the most
prevalent form of ovarian cancer, and is the 5th leading cause of
cancer mortality in women in the United States [38]. Ovarian can-
cer patients are likely to be diagnosed with a late stage due to its
asymptomatic nature, which are causing poor survival status
[39]. Given multi-omics data, inter-relationships from one level
to another may lead to some clues that help to uncover an
unknown biological knowledge. Integrating multi-omics data and
inter-relationship for predicting clinical outcomes will lead to
better understand multi-layered genetic determinants of ovarian
ossible inter-relationships between four types of genomic data including CNA,
raph where nodes represent patients and edges depict their similarities.



Table 1
Data description.

Data type Platform # Features

CNA Agilent SurePrint G3 Human CGH
Microarray Kit 1 � 1 M

54 cytobands

Methylation Infinium Humanmethylation27
BeadChip

27,578 CpG loci

miRNA Agilent Human miRNA Microarray
Rel2.0

799 miRNAs

Gene expression Affymetrix HT Human Genome U133
Array Plate Set

12,042 genes
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cancer survival, further allowing for the possibility of leading alter-
native therapies that may improve outcomes.

2. Materials and methods

2.1. Data

Normalized multi-omics datasets in ovarian cancer were down-
loaded from TCGA data portal (http://tcga-data.nci.nih.gov/)
(Table 1). Gene expression, miRNA, and methylation data contain
12,042 genes, 799 miRNAs, and 27,578 CpG loci, respectively. In or-
der to use the results of altered regions of deletion or amplification
across sets of patients, CNA data was retrieved from cBio Cancer
Genomics Portal [40]. CNA data contains 54 significant cytoband
regions. A binary classification of short-term and long-term sur-
vival was set for a pilot project. In the classification of short-term
or long-term survival, ‘short-term’ represents the patients who sur-
vived less than 3 years, whereas ‘long-term’ indicates patients who
survived longer than 3 years [41]. A total of 258 patients’ records
were available across the CNA, methylation, gene expression, and
miRNA data sets (N = 258) with survival information, in which
110 were short-term survival and 148 were long-term survival.

2.2. Clinical outcome classification

We used a graph-based semi-supervised learning (SSL) as a
classification algorithm, which is a halfway learning scheme be-
tween supervised and unsupervised learning [42–45]. One of the
Fig. 2. Schematic overview of integrating different levels of genomic d
strengths of graph-based integration is its computational efficiency
because of sparseness properties of input matrix while the accu-
racy remains comparable to the other methods such as kernel-
based integration [46,47]. In addition, a graph-based SSL enjoys
other advantages such as visualization, its relationship with kernel
methods, solid mathematical background, and robust results in
computational biology [48].

In this study, the common entity of each graph from multi-
omics data is a patient (Fig. 1). If two patients were more closely
related than to others, we assumed that clinical outcomes of those
two patients would be more likely to be similar [4,49]. Thus, clin-
ical outcome prediction can be conducted by considering similari-
ties between patients based on their genomic profiles such as gene
expression. Edges represent similarities between patients ex-
tracted from genomic profiles such as gene expression or methyl-
ation. An annotated patient is labeled either by ‘�1’ or ‘1’,
indicating two possible clinical outcomes, either ‘short-term sur-
vival’ or ‘long-term survival’ (Fig. 2). In order to predict the label
of the unannotated patient ‘?’, the edges connected from/to the pa-
tient play an important role in influencing propagation between
the patient and its neighbors. This idea can be easily formulated
using graph-based SSL [45]. Technically, the data-setup of our
experiment for the binary classification can be rephrased as
fxn; yng

N
n¼1 where xn e Rd (d is the number of features and N is the

number of patients) and yn e {�1,1}.

2.3. Graph-based SSL

Here, we present the formulation of the graph-based SSL. In the
graph-based SSL, a patient xi (i = 1,. . .,n) is represented as a node i
in a graph, and the relationship between patients is represented
by an edge. The edge strength from node j to node i is encoded
in element wij of a n � n symmetric weight matrix W. A Gaussian
function of Euclidean distance between patients was used to state
connection strength:

wij ¼
exp � ðxi�xjÞT ðxi�xjÞ

r2

� �
if i � j;

0 otherwise:

8<
: ð1Þ
ata and inter-relationship (e.g. miRNA and gene expression data).

http://tcga-data.nci.nih.gov/
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Nodes i, j are connected by an edge if i is in j’s k-nearest-neighbor-
hood or vice versa. The labeled nodes have labels yl 2 {�1,1},
whereas the unlabeled nodes have zeros yu = 0. An output
of graph-based SSL is an n-dimensional real-valued vector
f = [fl

Tfu
T]T = (f1,. . .,fl, fl+1,. . .,fn=l+u)T, which can be thresholded to

create label predictions on fl = f1,. . .,fn after learning. Graph-based
SSL consists of two main conditions, which are loss condition and
smoothness condition. It is assumed that fi should be close to the
given label yi in labeled nodes as a loss condition, and overall, fi

should not be too different from the fi of adjacent nodes as a
smoothness condition. One can obtain f by minimizing the follow-
ing quadratic functional [42,44,45]:

min
f
ðf � yÞTðf � yÞ þ lf T Lf ; ð2Þ

where y = (y1,. . .,yl, 0,. . .0)T, and the matrix L, called the graph
Laplacian matrix [50], is defined as L = D �W where D = diag(di),
di =

P
jwij. The parameter l trades off loss versus smoothness. The

solution of this problem is obtained as

f ¼ ðI þ lLÞ�1y; ð3Þ

where I is the identity matrix.

2.4. Inter-relationship between different levels of genomic data

In order to overcome the disadvantage of intermediate integra-
tion, we create another graph that contains inter-relationship be-
tween different graphs (Fig. 2). In the Fig. 2 as an example of
miRNA and gene expression, two graphs can be generated from
miRNA and gene expression data, respectively. In addition, another
graph containing inter-relationship between miRNA and its target
genes can be generated as well. If information from inter-relation-
ship graph is regarded as complementary to original graphs from
miRNA or gene expression, the prediction accuracy through the
integration three graphs will increase. Even though relations be-
tween miRNA and gene expression, between CNA and gene expres-
sion, or between methylation and gene expression have been
investigated from several studies [26–36], to the best of our knowl-
edge, there are few integrative studies between CNA and methyla-
tion, between CNA and miRNA, or between miRNA and
methylation. In our study, nevertheless, we conducted all possible
inter-relationships between four different genomic data, CNA,
methylation, gene expression, and miRNA (Fig. 1).

(A) miRNA – Gene expression (RE)
(B) CNA – Gene expression (CE)
(C) Methylation – Gene expression (ME)
(D) CNA – Methylation (CM)
(E) CNA – miRNA (CR)
(F) Methylation – miRNA (MR)

In order to get inter-relationship between miRNA and gene
expression (RE) from interaction knowledge, we used miRecords,
which is integrated resources of miRNA that store target interac-
tions produced by 11 established miRNA target prediction pro-
grams [51]. We created 10 variations for predicted target pairs
between miRNA and its target genes by considering the number
of positive voters from the included algorithms by miRecords in or-
der to reduce false positives from 11 miRNA target prediction
sources (Supplementary Table 1). Because most of the evaluation
results from these variations were largely comparable, the most
representative variation # 6 in Supplementary Table 1 was used
to get inter-relationship between miRNA and its target genes for
further study. For the inter-relationship between CNA and gene
expression (CE), we used the chromosomal positional information
of multiple genes in a specific CNA region since gene dosage from
either deletion or duplication can affect gene expression. We con-
sidered a cis acting of methylation probe with respect to a given
gene expression within 500 kb interval between methylation
probe and genes for the inter-relationship between methylation
and gene expression (ME) [52]. For the inter-relationships between
CNA and methylation (CM) or between CNA and miRNA (CR), we
also used the chromosomal positional information that the relation
was set if miRNA or methylation probe are within CNA region.
In addition, for the inter-relationship between methylation and
miRNA (MR), an indirect mapping strategy through common genes
was adopted because there is no known interaction knowledge
between them. The relation between methylation and miRNA
(MR) was set if a targeted gene from a specific miRNA is also
shared by a specific methylation probe as a candidate cis-acting
regulation.

2.5. Weight matrix incorporating inter-relationship

To calculate a weight matrix (W) containing inter-relationship
between different levels of genomic data, we adopt a new measure
that has been recently developed and re-validated in the previous
study [53]. As an example of miRNA and gene expression data, let
miRNA represent the miRNA data matrix of size N by Nmi and let
gene denote the gene expression data matrix of size N by NG, where
N, Nmi, and NG represent the number of patients, miRNAs, and gene
expression traits, respectively. A new feature matrix X incorporat-
ing the miRNA-target gene information can be constructed by

Xij ¼
XNG

m¼1

miRNAði; jÞ � geneði;mÞ � dðj;mÞ; ð4Þ

where d(j,m) = 1 if mth gene is targeted by jth miRNA, and 0 other-
wise. After constructing the new matrix containing inter-relation-
ship between two different types of genomic data, a Gaussian
function of Euclidean distance between patients was used to calcu-
late the final weight matrix using Eq. (1). Thus, nearby patients in
Euclidean spaces are assigned large edge weights, which are likely
to share similar inter-relationship pattern. This weight matrix con-
taining inter-relationship can be used for graph-based SSL as an in-
put, representing an inter-relationship graph. This approach was
applied to other pairs including CE, ME, CM, CR, and MR.

2.6. Integrating multiple graphs

From different levels of genomic data and inter-relationship,
multiple graphs can be generated (Fig. 2). However, clinical out-
come prediction can benefit by integrating diverse graphs from
multi-omics data and inter-relationship, rather than relying only
on single level of genomic data that may have possible limitations,
(i.e. incomplete information and noise). Information from each
graph is regarded as partly independent from and partly comple-
mentary to others. When genomic data are presented as a graph
form, integrating multi-omics data can be done by employing a
graph integration method from finding optimum combination
coefficients [23,46,54]. Based on the method, the integration of
multiple graphs was conducted through finding an optimum coef-
ficient of the linear combination for the individual graphs. This cor-
responds to finding the combination coefficients a for the
individual Laplacians of the following mathematical formulation:

min
a

yT I þ
XK

k¼1

akLk

 !�1

y;
X

k

ak 6 l; ð5Þ
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where K is the number of graphs and Lk is the corresponding graph-
Laplacian of graph Gk. Similar to the output prediction for single
graphs, the solution is obtained by

f ¼ I þ
XK

k¼1

akLk

 !�1

y: ð6Þ
3. Results and discussion

The receiver operating characteristic (ROC) curve plots sensitiv-
ity (true positive rate) as a function of 1-specificity (false positive
rate) for a binary classifier system as its discrimination threshold
is varied [55]. For each problem, we calculated area under the
curve (AUC) of ROC as a performance measure. In order to avoid
over-fitting, five-fold cross-validation was conducted. Because
genomic data sources are normally high dimensional and noisy
and contain many redundant features, which could incur computa-
tional difficulty and low accuracy, a t-test based feature selection
method was used [56]. Even though there are many feature selec-
tion techniques such as filter, wrapper, and embedded method
[57], a simple univariate feature selection method was used in or-
der to emphasize not the effect of feature selection but the effect of
integration with multi-omics data and inter-relationship between
them in this study.

3.1. Selected features

In order to avoid the over-fitting, the feature selection was con-
ducted using training dataset and repeated for five times. We set a
0.05 p-value threshold from t-test to fairly get selected features
from different levels of genomic data. Among selected features
from five times, we finally selected overlap features in order to
make the weight matrix. The total numbers of final selected fea-
tures of CNA, methylation, miRNA, and gene expression data are
2 CNA regions, 100 CpG loci, 25 miRNAs, and 99 genes, respec-
tively. For constructing inter-relationship graph, we searched over
possible pairs between selected features belonging to the different
levels of genomic data based on interaction knowledge as de-
scribed in the Method section. Due to the small number of selected
CNA features, there were not enough pairs between CNA feature
and other features. Thus, we searched over 54 CNA features rather
than 2 features to have possible inter-relationship between CNA
feature and other genomic features since 54 CNA regions were re-
sults of altered regions of amplification or deletion across sets of
patients from GISTIC algorithm. The final numbers of pairs of CE,
RE, ME, CM, CR, and MR are 13, 14, 202, 12, 2, and 22, respectively.

3.2. Integration with inter-relationship between different levels of
genomic data

Fig. 3 shows the prediction performance on the classification of
short-term and long-term survival in ovarian cancer for 6 types
of pair, RE, CE, ME, CM, CR, and MR, between CNA, methylation,
miRNA, and gene expression data. ROC curves can be found in
the Supplementary information (Supplementary Fig. 1). For the
pair between miRNA and gene expression data (RE), the SSL with
miRNA data (R) and gene expression data (E) performed with AUCs
of 0.6699 and 0.8191, respectively. In addition, the integration
model with miRNA and gene expression data (RE) showed better
performance with the AUC of 0.8404 than the model from the
miRNA or gene expression data alone. In particular, the model
integrating miRNA, gene expression, and inter-relationship
between them with the AUC of 0.8476 (REI) even outperformed
the model combining miRNA and gene expression data (RE)
(Fig. 3(a)). Note that, similar results were also obtained for other
pairs, CE, ME, CR, and MR except for CM (Fig. 3(b–f)). As we
expected, ME and CE pairs also showed that the performance of
model incorporating inter-relationship, MEI and CEI, increased
compared to the one without inter-relationship, ME and CE,
respectively (Fig. 3(b) and (c)). However, the performance of the
integration model from CNA, methylation, and inter-relationship
between them (CMI) showed worse than the model combining
CNA and methylation data (CM) (Fig. 3(d)). Even though the inte-
gration model from CNA and miRNA (CR) showed the worse
performance compared to the model with genomic data alone
(R), the performance of the model incorporating inter-relationship
(CRI) showed the best among any other models (Fig. 3(e)). Most
interestingly, when incorporating inter-relationship between
methylation and miRNA, the final integrated model (MRI) with
the AUC of 0.7994 outperformed the integrated model (MR)
with the AUC of 0.7865 (Fig. 3(f)). We found that the opportunity
for success in prediction of clinical outcomes in ovarian
cancerincreased when incorporating inter-relationship into the
final SSL model.
3.3. Biological implication

On the bases of the results, the model incorporating inter-
relationship between different genomic features showed the
improvement compared to the model without inter-relationship
when integrating multi-omics data. Taken together these results
suggest that inter-relationship between difference levels of geno-
mic data is complementary to the prediction power of explaining
cancer clinical outcome. Through the proposed model, different
levels of genomic features associated with survival in ovarian
cancer were selected. In particular, selected features involved in
inter-relationship might be regarded as acting important roles
associated with survival in ovarian cancer. As different levels of
genomic data including CNA, methylation, and miRNA might affect
gene regulation through either specific or synergistic fashion, this
approach will lead us to an enhanced global view on interplays
between them [58,59].

In order to view the whole interplays from an inter-relationship
network was generated using Cytoscape (Fig. 4) [60]. Nodes depict
genomic features such as CNA, methylation, gene, or miRNA and
edges represent inter-relationship between different genomic fea-
tures based on interaction knowledge. Even though there are a few
isolated networks that have one or two edges, many of genomic
features are connected to each other as a big network (Fig. 4). This
suggests that different levels of genomic features are not likely act-
ing in isolation, but rather interact with other genomic features
since cancer is dysregulated by multiple levels in the biological
system through genomic, epigenomic, transcriptomic, proteomic
level [11]. RE showed the largest number of edges from the net-
work (Fig. 4). However, the number of edges is not biased to the
prediction model with inter-relationship. MR, which has much
smaller number of edges than the RE, showed the greatest
improvement compared to the model without inter-relationship
(Fig. 3). Among genes with a large number of edges, CHP gene is in-
volved in MAPK signaling pathway that plays a critical role in the
development and progression of ovarian cancer and other cancer
types [61,62]. In addition, genetic and epigenetic regulation of
the SLC22A3 gene associated with prostate cancer was well de-
scribed [63] and the potential role of SLC22A3 as one of the mem-
bers of FRA6E in ovarian cancer was also investigated [64]. EGF-like
module containing mucin-like hormone receptor 2 (EMR2) is
associated with survival in breast cancer [65]. Among miRNAs
with a large number of edges, hsa-miR-146a is well known as a
common mechanism of miRNA activity in cancer cell, which is
trans-activated by the NF-kB pathway and negatively feeds back



Fig. 3. Performance comparison between models: C stands for CNA, M for methylation, E for gene expression, R for miRNA, I for inter-relationship, RE for the integration
model from miRNA and gene expression data, REI for the integration model from miRNA, gene expression, and inter-relationship (a) RE pair (b) CE pair (c) ME pair (d) CM pair
(e) CR pair (f) MR pair.
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Fig. 4. Inter-relationship network from selected features involved in inter-relationship between different levels of genomic data. Nodes depict genomic features such as CNA,
methylation, gene, or miRNA and edges represent inter-relationship between different genomic features based on interaction knowledge. Node size varies based on the
degree of connectivity of the nodes. Edge shape is also different from the types of inter-relationship.
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on this signaling cascade by targeting two upstream activators of
the pathway, IRAK1 and TRAF6 [66].

Most interestingly, MR pair showed the great improvement by
incorporating inter-relationship between miRNA and methylation
Fig. 5. Inter-relationship network from selected features for the inter-relati
through common genes (Fig. 3(f)). Thus, we created a network in
order to see shared genes by methylation and miRNA (Fig. 5). Se-
ven genes including RBBP7, CTPS2, KLK12, HPCA, UAP1L1, MAPT,
and KIAA1033 were shared by miRNA and methylation. MAPT gene
onship between methylation and miRNA (MR) sharing common genes.



Fig. 6. Whole genome view of selected features using PhenoGram: blue circle stands for gene expression, green circle for methylation, red circle for CNA, and black circle for
miRNA.
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is also involved in MATK signaling pathway that is potential cancer
therapy in ovarian cancer [67]. In addition, kallikrein gene 12
(KLK12) might be involved in the pathogenesis and progression
of several cancer types and considered as a novel cancer biomarker
[68].

Taken together these results suggest that there might be possi-
ble synergistic mechanism between methylation and miRNA regu-
lation for the expression [69].

In order to provide the whole genome view, all selected features
for the inter-relationship between four types of genomic data were
plotted using PhenoGram visualization software (Fig. 6) [70]. In
particular, chromosome 19 shows many of the features of genomic
instability from different levels of genomic data, which was re-
ported in the previous study [19]. One interesting possibility sug-
gests that the same genomic loci might contribute clinical
information in more than one domain – the same genes that
change in their copy number, miRNA patterns, and methylation
patterns also present predictive powers based on gene expression
levels.
4. Conclusions

In this study, we addressed the issue of integrating inter-rela-
tionship between different levels of genomic data in the intermedi-
ated integration manner. We proposed the new framework that
combines not only multi-omics data but inter-relationship be-
tween them in order to better predict cancer clinical outcomes.
For demonstrating the validity of the proposed framework, ovarian
cancer data from TCGA was adopted for classifying short-term and
long-term survival as a pilot project.

On the bases of the results of our computational experiments,
the model incorporating inter-relationship between different
genomic features showed the modest improvement compared
to the model without inter-relationship when integrating
multi-omics data. We found that not only RE, CE, and ME pairs
but CR and MR pairs showed the positive effect of integration with
inter-relationship. These results suggest that inter-relationship be-
tween genomic features is complementary to the prediction power
of explaining cancer phenotype because of the possible mecha-
nisms that genomic features are likely to operate together in can-
cer. In addition, we could investigate the interplays associated with
survival in ovarian cancer between different levels of genomic fea-
tures through incorporating inter-relationship. Taken together
these results suggest that proposed framework will lead us to an
improved global view on interplays since different levels of geno-
mic data might affect the cancer clinical outcome through either
partly independent or partly complementary fashion. Notably,
when combining inter-relationship between methylation and miR-
NA into the model, it showed the greatest improvement. It sug-
gests that there might be possible synergistic regulatory
mechanism between methylation and miRNA for gene expression.
Thus, integration of different levels of data and inter-relationship
between them can aid in extracting new biological knowledge by
drawing an integrative conclusion from many pieces of informa-
tion collected from diverse types of genomic data.

One of the limitations in the current study is that we only used
the limited interactions knowledge such as ‘miRNA – its target
genes’, ‘CNA regions – genes in the altered region’, ‘methylation –
candidate genes targeted by methylation as cis acting regulation’,
etc. We expect that the model integrating multi-omics data and in-
ter-relationship will improve as long as the quality of interaction
knowledge increases in the future. Moreover, another interesting
direction for further works would be the incorporation of inter-
relationship based on not interaction knowledge but interaction
profiles as a data-driven approach. For instance, the direction of
correlation between CNA and expression of genes in CNA region
usually shows positive. On the other hands, the direction of corre-
lations between gene expression and miRNA or between gene
expression and methylation normally show negative. Even though
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the current study is limited in predicting of short-term and long-
term survival in ovarian cancer as a pilot task, the proposed frame-
work can be applied to other clinical outcomes such as grade,
stage, metastasis, recurrence, etc. Moreover, this framework can
be applied to other cancer types as well for the future works. As
multi-omics data from about 25 cancer types has exploded in
use, our proposed framework will be valuable for explaining the
underlying tumorigenesis, eventually leading to more effective
screening strategies and therapeutic targets in many types of can-
cer. The Matlab code for graph-based semi-supervised learning will
be available upon request.
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