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A B S T R A C T   

For the machine learning-based prediction of the conversion from mild cognitive impairment to Alzheimer’s 
disease, the collection of sufficient data to train a model is required, which involves a lot of time and expense. 
When data is not enough, combining public and in-house data may be appropriate by applying domain adap-
tation that alleviates inter-site heterogeneity. Existing methods simultaneously transform in-house and public 
data to represent them into a common feature space, and then train a classifier using labels in public data. 
However, this procedure causes the time- and cost-consuming re-training of classifier whenever in-house data 
changes, and also inheres the risk of information loss in public data. Motivated by this, we propose a method that 
only transforms in-house data while preserving public data, namely one-way domain adaptation. The proposed 
method represents in-house data similar with public data by matching the data distribution and the connectivity 
between brain regions with mean vectors and covariance matrices, respectively. Then, the pre-trained classifier 
in public data is applied to predict AD conversion for in-house data. The experiments, which use the Australian 
Imaging Biomarkers and Lifestyle Study of Aging and the Open Access Series of Imaging Studies as the in-house 
data and the Alzheimer’s Disease Neuroimaging Initiative as the public data, show the effectiveness and effi-
ciency of the proposed method, improving prediction performance about 34.8% on average without labels in the 
in-house datasets.   

1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia 
affecting older people (Petrella, Coleman, & Doraiswamy, 2003). Due to 
the extension of life expectancy, the number of AD patients continues to 
increase, and the global Alzheimer’s disease population is expected to 

triple from approximately 50 million in 2015 to 131.5 million in 2050 
(Cummings, Lee, Ritter, Sabbagh, & Zhong, 2019). As such, AD is 
emerging serious problem, but the cause is unclear and there is no 
therapy to revert it. Therefore, with the early detection of AD, it is 
important to predict the potential risk of disease progression and find an 
appropriate prevention strategy. According to clinical symptoms with 
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mild memory loss or other cognitive loss, mild cognitive impairment 
(MCI) is considered a prodromal phase of AD with symptoms such as 
long-term memory loss, speech impairment, disorientation, and per-
sonality changes. Previous studies have suggested that approximately 
12 % of subjects suffering from MCI progress to AD in the four years 
following the first symptoms (Petersen, et al., 1999). Consequently, 
early detection of the potential risk of AD boils down to the task of 
predicting whether MCI patients will convert to AD or not. 

Most studies predicting the conversion from MCI to AD have founded 
on brain imaging such as magnetic resonance imaging (MRI). The dif-
ference between MCI and AD is associated with loss of brain volume and 
the development of localized lesions of white and gray matter. With the 
recent advance of brain imaging technologies, the computer-aided 
methods have implemented accurate prediction of the conversion 
(Arbabshirani, Plis, Sui, & Calhoun, 2017; Rathore, Habes, Iftikhar, 
Shacklett, & Davatzikos, 2017). Particularly, the application of machine 
learning (ML) has contributed significantly to these improvements 
(Pellegrini, et al., 2018). A typical ML algorithm applied to brain MRI 
learns a set of preprocessed data, such as regional volumes and cortical 
thickness, to create a classifier which predicts the correct diagnostic 
outcome for new observations (Liu, Tosun, Weiner, Schuff, & Initiative, 
2013). 

The success of the prediction depends on the data provided to the ML 
algorithm. The more data we have, the more sophisticated our results 
will be. However, collecting medical data is usually time-consuming and 
expensive. As a result, an ML algorithm often suffers from a lack of data 
to learn. Besides the insufficiency of data, the amount of labeled data has 
a huge impact on the performance of classification. In general, the cases 
for normal subjects are dominant to those for AD subjects, so are the 
corresponding MR images. This incurs a lack of labels for learning. In 
order to obtain more labels for AD brain imaging, more cases of AD 
subjects need to be accumulated, which is also time-consuming and 
expensive. 

The insufficiency in learning data can be supplemented by merging 
or integrating external data. Different data can be easily merged or in-
tegrated into one if they are homogeneous in features, measurement 
units, imaging protocols, etc. However, this rarely happens, and the 
different datasets are heterogeneous, which is referred to as inter-site 
heterogeneity. Meanwhile, domain adaptation can be used as one of 
the good alternatives to address the shortcomings (Ben-David, et al., 
2010). It transforms the different datasets belonging to each domain to 
appear as one dataset. The features from different domains adapted to a 
common feature space by reducing the discrepancy between domains (J. 
Huang, Gretton, Borgwardt, Schölkopf, & Smola, 2006a). Here, datasets 
from different domains can be considered brain MR image sets from 
other sites, such as hospitals or research institutions. More simply, when 
we utilize the public data to analyze the in-house data of a certain site, 
they can be regarded as different domains. In general, the in-house data 
is relatively small in size, not rich in content, and highly biased 
compared to the public data. Therefore, adapting in-house data to public 
data can compensate for these shortcomings, and ML algorithms learn 
reliably from more sufficient data. Also, it is an additional gain that 
more labels can be provided to the algorithm, which leads to more ac-
curate and robust prediction outcomes. Consequently, these benefits of 
domain adaptation using in-house data plus public data can be applied 
to AD conversion prediction, circumventing insufficiency in data and 
labels. 

There have been interesting studies on AD conversion prediction 
with domain adaptation. Li et al. proposed the method that functional 
MRI features for source and target samples are extracted, and then 
samples are projected from both domains into a shared subspace to 
reduce the domain discrepancy (Li, Zhao, Chen, Xiao, & Qin, 2018). 
Moradi et al. utilized an information theoretic method for the unsuper-
vised domain adaptation where the classifier is trained using MRIs 
represented by gray matter density features in different datasets (Mor-
adi, Gaser, Huttunen, & Tohka, 2014). Cheng et al. suggested domain 

transfer learning with a feature selection method to train a classifier 
reducing domain shift for MCI conversion prediction (Cheng, Liu, 
Zhang, Munsell, & Shen, 2015). As such, existing methods create a 
common feature space in which different domain samples are mixed and 
train a classifier for the task. Despite these successes, existing methods 
have the limitation in utilizing the public data. In previous studies, 
domain adaptation simultaneously transforms the in-house and public 
data, represents them into a common feature space, and train a classifier 
with labels in public data. For this reason, whenever the in-house data 
changes, the classifier must be newly trained. Such re-training is tedious 
and time- and cost-consuming. 

In this study, we propose a novel method for domain adaptation to 
apply to the prediction problem of AD conversion from MCI patients 
using T1-weighted structural MRIs. To avoid the tedious re-training, this 
method employs a one-way transformation of the in-house data into 
larger, content-rich, and less-biased public data. It is also convenient to 
compare different in-house data from different sites. 

In the next section, we introduce the related works and present the 
materials for this paper, and the following section includes the 
description for the detailed process of the proposed method, distribution 
matching and connectivity mapping, along with its mathematical imple-
mentation. The experiment section shows the various results on three 
different datasets: the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), the Australian Imaging Biomarkers and Lifestyle Study of Aging 
(AIBL), and the Open Access Series of Imaging Studies (OASIS). Finally, 
we conclude this paper by mentioning discussions and contributions 
along with limitations of the proposed method. 

2. Related works 

Domain adaptation is a representative strategy for the data with a 
few information to perform training by utilizing other data with a lot of 
information (Ben-David, et al., 2010; J. Huang, Gretton, Borgwardt, 
Schölkopf, & Smola, 2006b). This allows the target domain to improve 
the performance of classification or regression from the information 
provided by the source domain (Chen, Weinberger, & Blitzer, 2011; Pan 
& Yang, 2009; Xue, Dai, Yang, & Yu, 2008). Accordingly, domain 
adaptation has been widely used in various fields. Among them, espe-
cially in the medical field, domain adaptation is a very useful method for 
collecting large amounts of patient data across multiple sites. In this 
case, since many hospitals, doctors, and medical devices have different 
standards and characteristics, it is essential for the consistent repre-
sentation of heterogeneous datasets by domain adaptation. To imple-
ment this, various methods have been developed by existing studies, 
mostly being applied to the medical imaging data. 

The existing domain adaptation studies for medical imaging data can 
be roughly divided into two types: singular value decomposition (SVD)- 
based methods and domain adversarial training-based methods. First, 
SVD decomposes a data matrix into three matrix products (two 
orthogonal matrices for left and right singular vectors and a diagonal 
matrix for singular values), which is an important method used in 
various fields such as data compression, dimensionality reduction, and 
data reconstruction. For domain adaptation, the main process of SVD- 
based methods is as follows: (1) SVD is performed on each data in the 
source and target domains. (2) Each data is represented on the same 
subspace by the orthogonal matrix for right singular vectors. (3) The 
orthogonal matrices are trained for the consistency of the different 
representation of the two data. (4) Each data is transformed by the 
optimized orthogonal matrices, and the target tasks are performed, such 
as classification or regression. This process has been successfully used to 
detect Alzheimer’s disease on small datasets of neuroimaging (DADS) 
(Li, et al., 2018). Furthermore, the multi-site adaption framework via 
low-rank representation decomposition (MALRR) has also been devel-
oped to identify autism spectrum disorders. As a more advanced 
method, multi-site clustering and nested feature extraction (MCNFE) has 
recently been developed for identifying autism spectrum disorder with 
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resting-state fMRI (Wang, Yao, Ma, & Liu, 2022). 
Next, DAT-based methods are based on neural network typically 

consisting of feature extractor and classifier in which the former trains 
domain labels (source or target), and the latter trains class labels. The 
research that is the starting point of this approach is domain adversarial 
neural network (DANN), which developed a gradient reversal layer and 
trained the model so that the domain labels of each data could not be 
distinguished well (Ganin, et al., 2016). As a result, it was possible to 
extract well-matched features to make the data of different domains look 
like one, and at the same time to perform classification for the target 
domain by training the labeled data of source domain. The excellence of 
DANN has resulted in various follow-up studies. In the field of medical 
imaging, DANN was advanced by paired consistency and adversarial 
learning (PCAL) for multi-domain adaptation in brain MRI (Orbes- 
Arteaga, et al., 2019). Furthermore, conditional domain adversarial 
network (CDAN) has also been developed to classify ADHD with cross- 
site functional MRI datasets (Y.-L. Huang, Hsieh, Yang, & Lee, 2020). 
As a more advanced method, attention-guided deep domain adaptation 
(ADDA) has recently been developed for multi-site MRI harmonization 
to identify brain disorder (Guan, et al., 2021). 

3. Materials 

Datasets used in this paper was obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (https://www.loni.ucla. 
edu/ADNI), the Australian Imaging Biomarkers and Lifestyle flagship 
study of aging (AIBL) (https://www.aibl.csiro.au), and the Open Access 
Series of Imaging Studies (OASIS) (https://www.oasis-brains.org/) 
(Marcus, Fotenos, Csernansky, Morris, & Buckner, 2010). Each dataset 

contains two types of information of subjects, demographics and MR 
images, and each is described in the following subsections. 

3.1. Demographics of subjects 

Subjects were labeled according to the criteria in (Cheng, et al., 
2015; Lee, Nho, Kang, Sohn, & Kim, 2019) as follows. (a) MCI subjects: 
MMSE scores between 24 and 30, a memory complaint, having objective 
memory loss measured by education adjusted scores on Wechsler 
Memory Scale Logical Memory II, a Clinical Dementia Rating (CDR) of 
0.5. (b) AD subjects: MMSE scores between 20 and 26, CDR of 0.5 or 1.0. 
As a result, 219 subjects including 110 MCI-C and 109 MCI-N were 
totally selected. Table 1 provides a summarized demographics. 

3.2. MRI preprocessing 

A total of 438 MR images were collected for the selected subjects. MR 
images were preprocessed as follows. First, we performed the anterior 
commissure (AC)-posterior commissure (PC) correction. Second, images 
were segmented into three different tissues, gray matter (GM), white 
matter (WM) and cerebrospinal fluid (CSF), by using the computational 
anatomy toolbox (CAT12: https://www.neuro.uni-jena.de/cat/) in SPM 
(Ashburner, et al., 2014; Penny, Friston, Ashburner, Kiebel, & Nichols, 
2011). Next, we obtained the subject-labeled images with 95 ROIs based 
on HAMMER (Shen & Davatzikos, 2002). At last, the volume of GM 
tissue was normalized to the total intracranial volume by summing the 
GM, WM, and CSF volumes of all ROIs. The MRI preprocessing pipeline 
is schematically illustrated in Fig. 2, and this process is widely used in 
neuroimage-based application studies (Gaser, et al., 2022; Park, et al., 
2023). 

4. Methods 

The proposed method consists of one-way domain adaptation and AD 
conversion prediction as shown in Fig. 1. First, the in-house data is 
transformed into the feature space of the public data via an adaptation 
matrix. To solve the heterogeneity problem of different domains, the 
matrix is designed to implement two properties, distribution matching 
and connectivity mapping. The former serves to reduce the discrepancy 
between regions by matching the center of the distribution. The latter, 

Table 1 
Demographics of subjects in the datasets.  

Category ADNI AIBL OASIS 

# of subjects (MCI-C /MCI-N) 147 (74/73) 30 (15/15) 42 (21/21) 
Age at baseline 74.6 ± 7.4 75.7 ± 5.7 73.5 ± 6.8 
Follow-up duration (months) 28.4 ± 10.1 27.0 ± 9.2 27.2 ± 10.2 
MMSE baseline 27.4 ± 1.6 26.8 ± 1.5 27.6 ± 1.7 

follow-up 24.3 ± 4.8 24.3 ± 3.1 24.9 ± 3.7 
CDR(0/0.5/1) baseline 0/147/0 1/29/0 1/41/0 

follow-up 0/87/60 0/22/8 0/29/13  

Fig. 1. Overview of the proposed method. The proposed method for domain adaptation aims to solve the prediction problem of AD conversion from MCI patients 
using T1-weighted structural MRIs. The proposed method involves one-way domain adaptation and prediction of AD conversion. It starts by transforming in-house 
data into the feature space of public data using an adaptation matrix. This matrix addresses domain heterogeneity through distribution matching and connectivity 
mapping, reducing differences between regions and establishing similar relationships between data features. Next, a machine learning algorithm performs classi-
fication on the combined public and transformed in-house data, leveraging available labels to define classification boundaries. This enables classification even in 
cases without labeled data, aligning the transformed in-house data in the feature space for accurate categorization using established class boundaries. 
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on the other hand, makes the relationship between the features of the in- 
house data similar with those of public data. To the AD conversion 
problem, the property of distribution matching has an effect of calibration 
for the brain volume data from different domains. Meanwhile, the 
property of connectivity mapping indicates that brain ROIs from in-house 
data maintain similar relationships even after adaptation, thus indi-
cating that ROIs have strong connections and tend to have strong con-
nections in the transformed feature space. 

Second, an ML algorithm perform classification on the public data 
which now include the transformed in-house data. Notably, even if there 
is no labeled data such as no brain image for the case of AD conversion, 
we still perform classification for the in-house data, unless there is no 
label in the public data neither. Since public data have labels, it is 
available to form the region of the classification boundary. The trans-
formed in-house data is then aligned into the feature space, and the data 
are classified using the class-boundaries. 

4.1. One-way domain adaptation 

4.1.1. Formulation 
Here after, ‘in-house’ and ‘public’ as ‘target’ and ‘source’, respec-

tively, by applying the terminology used for domain adaptation. Let the 
data matrices of source and target domain are denoted as 
XS ∈ ℝnS ×k,  XT ∈ ℝnT ×k, respectively, where nS and nT are the 
number of subjects in each data, and k is the number of brain ROIs. The 
adaptation matrix to be derived is A ∈ ℝk×k. To implement the distri-
bution matching, the proposed method represents the mean vector of the 
data matrix as the center of the distribution. The adaptation matrix A is a 
bridge so that the mean vector XT from the target data XT matches the 
mean vector XS from the source data XS . Therefrom, for the two mean 
vectors, A minimizes the discrepancy defined by L2 norm as follows. 

‖XT A − XS ‖
2
2 (1) 

The adaptation matrix A simultaneously implements the connectiv-
ity mapping. In general, the brain connectivity is represented as the 
correlation between brain ROIs, but in this study, it is represented as the 
covariance. With the derived covariance matrices CS ∈ ℝk×k and CT ∈

ℝk×k for the source and target domain, respectively, A reduces the dif-
ference between CS and CT by the term below. 
⃦
⃦ATCT A − CS

⃦
⃦2

2 (2) 

The objective function for A is defined by linearly combining Eq. (1) 
and (2), 

argmin
A

γD

2
‖XT A − XS ‖

2
2 +

γC

2
⃦
⃦ATCT A − CS

⃦
⃦2

2 +
1
2
‖A‖

2
2 (3) 

where the γD and γC are combining coefficients (γ* ≥ 0), and the last 
term ‖A‖

2
2 stands for the regularization. The purpose of A is to transform 

XT to make it as similar to XS as possible by regularizing all elements 
evenly, so it is defined as L2-norm rather than L1-norm which can cause 

the bias or the sparsity towards specific elements. The optimized solu-
tion for A is derived by applying the alternating direction method of 
multipliers (ADMM) algorithm (Boyd, Parikh, Chu, Peleato, & Eckstein, 
2011; Parikh & Boyd, 2014). 

4.1.2. Optimization 
At first, the original objective function in Eq. (3) is redefined into the 

following equivalent formulation by introducing an additional matrix U 
and an equality constraint: 

argmin
A,U

γD

2
‖XT U − XS ‖

2
2 +

γC

2
⃦
⃦ATCT U − CS

⃦
⃦2

2 +
1
2
‖U‖

2
2 (4)  

s.t.A = U 

Eq. (4) is a quadratic minimization problem in terms of A and U 
separately, subjecting to the equality constraint. Therefrom, the 
augmented Lagrangian function L is 

L(A,U, θ) = γD

2
‖XT U − XS‖

2
2 +

γC

2
⃦
⃦ATCT U − CS

⃦
⃦2

2 +
1
2
‖U‖

2
2 + Tr

(
θT(A

− U)
)
+

ρ
2
‖A − U‖

2
2 

where θ is the dual variable matrix and ρ is the penalty parameter, 
both for the equality constraint. The optimization process iteratively 
minimizes the augmented Lagrangian over the primal variable matrices 
A and U separately, while updating the dual variable matrix. Specif-
ically, in the (i + 1)-th iteration, the following three steps are performed 
with the 

(
A(i),U(i), θ(i) ). 

(Step 1: Minimization over U) Given the current fixed A(i) and θ(i), 
U can be updated by 

U(i+1) := argmin
U

L
(
A(i),U, θ(i) )

and the solution is 

U(i+1) =
(

γDXT

TXT + γCCT
TA(i)A(i)TCT + (1 + ρ)I

)− 1(
γDXT

TXS

+ γCCT
TA(i)CS + θ(i) + ρA(i) ) (5) 

(Step 2: Minimization over A) With the current values of U(i+1) and 
θ(i) being fixed, A is updated by 

A(i+1):= argmin
A

L
(
A,U(i+1), θ(i) )

and the solution is 

A(i+1) =
(

γCCT U(i+1)U(i+1)TCT
T + ρI

)− 1(
CT U(i+1)CS

T − θ(i) + ρU(i+1) )

(6) 

(Step 3: Update of the dual variable matrix θ) The dual matrix θ is 
lastly updated as below: 

θ(i+1) = θ(i) + ρ
(
A(i+1) − U(i+1) ),  ρ = min (δρ, ρmax) (7) 

Fig. 2. MRI preprocessing pipeline. The preprocessing for MR images starts with AC-PC correction, followed by tissue segmentation (GM, WM, CSF) using CAT12 
in SPM. Subject-labeled images with 95 ROIs were generated using HAMMER. Finally, GM volume was normalized by summing GM, WM, and CSF volumes across all 
ROIs and normalizing to total intracranial volume. 
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In addition, A and U are initially set as 

A(1) = U(1) = argmin
U

‖XT U − XS ‖
2
2 + λ‖U‖

2
2

=
(
XT

TXT + λI
)− 1( XT

TXS

)
(8) 

where λ is the regularization trade-off parameter, and all elements in 
the initial dual matrix are zeros. Algorithm 1 summarizes the procedure 
of one-way domain adaptation. For the tabular formed data, XS and XT , 
of the preprocessed MR images, the mean vector and covariance matrix 
of each are used as inputs to the proposed method, which are utilized to 
implement the distribution matching and connectivity mapping, 
respectively. The proposed method performs iterative optimization to 
train the adaptation matrix A for transforming XT as similar as possible 
to XS , by applying the ADMM.  

Algorithm 1. One-way domain adaptation 

Input: 
Mean vectors XS and XT 

Covariance matrices CS and CT 

Hyperparameters ρmax = 106,  δ = 1.01,  ∊ = 10− 7 

Output: Adaptation matrix A* 

Initialize A(1), U(1) by Eq. (8) and θ(1) = 0 
repeat 
Update U(i+1) , A(i+1) , θ(i+1) by Eq. (5) - (7) 
until 

⃦
⃦A(i+1) − U(i+1)⃦⃦

∞ < ∊ 
return Adaptation matrix A*  

4.2. AD conversion prediction 

For subjects in the target domain, AD conversion prediction is per-
formed by applying the classifier f pre-trained in the source domain. To 
train f , various machine learning algorithms can be used by selecting an 
appropriate error function E . In the proposed method, the cross-entropy 
loss is used for training f as follows: 

E (YS , ŶS ) = YS
TlogŶS + (1 − YS )

Tlog(1 − ŶS )

where YS is the labels with YS (i) = 1 for MCI-C subjects and YS (i) =

0 for MCI-N subjects, and ŶS is the predicted values. Finally, the pre-
diction result for subjects in the target domain is derived as below: 

ŶT = f (XT A*)

5. Results 

5.1. Results for one-way domain adaptation 

In this subsection, we describe results for one-way domain adapta-
tion. The proposed method has two objectives to reduce the discrepancy 
between distributions of brain volume data (distribution matching) and 
to make the relationship between brain ROIs in the two domains similar 
(connectivity mapping). We represent the result for each objective in 
order. 

Fig. 3. Results for distribution matching. The left plots in both (a) and (b) represent KL-divergence of raw and adapted feature in AIBL and OASIS, for the ADNI. 
The middle and right plots show the original and the adapted feature maps visualized through t-SNE. With scaling, the mean vector of the ADNI data represents 
the origin. 
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5.1.1. Distribution matching 
At first, AIBL and OASIS were set as target domains and new feature 

representations of those data were derived according to ADNI, respec-
tively. We measured KL-divergence (Kullback, 1959; Kullback & Leibler, 
1951) to evaluate whether the data distribution of the target and the 
source coincided with each other. The results for distribution matching 
are shown in Fig. 3. From the left plots of Fig. 3(a) and (b), it seems that 
the KL-divergence with the ADNI data distribution was significantly 

reduced in both AIBL and OASIS. The value of KL-divergence indicates 
that the two distributions become more similar to each other as they get 
smaller and closer to zero. Therefore, the distribution matching aimed 
by the proposed method was performed well. In addition, the middle 
and right plots show the original and the adapted feature maps for AIBL 
and OASIS visualized through t-SNE (Van Der Maaten, 2014; Van der 
Maaten & Hinton, 2008). With scaling, the mean vector of the ADNI data 
represents the origin. Those plots show that for both AIBL and OASIS, 

Fig. 4. Results for connectivity mapping. Each node represents an ROI, and nodes are sorted by dividing the frontal lobe, temporal lobe, interbrain, and occipital 
lobe (OL) and parietal lobe (PL). The original AIBL in (a) reveals more connections within regions and fewer between them. In contrast, (c) displays increased inter- 
region edges in the ADNI. The outcome of the proposed method in (b) minimizes the difference of edge pattern between (a) and (c). Particularly, the adapted AIBL 
illustrates reduced edges within the frontal lobe and the interbrain, while edges between them are increased. These findings highlight the successful performance of 
the proposed connectivity mapping. 

Fig. 5. Comparison results of brain volume features of AIBL for ADNI. (a) indicates the difference of brain volume feature between raw AIBL for ADNI, and (b) 
depicts the difference between adapted AIBL for ADNI. (c) shows the distribution for difference of raw AIBL by entire ROI and presents the result of reducing the 
difference via domain adaptation for six ROIs with the highest. 
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the adapted features are closer to the origin. This consolidates that 
domain adaptation is well matched to the ADNI data distribution. 

5.1.2. Connectivity mapping 
Next, as the second objective of domain adaptation, the proposed 

method performs connectivity mapping so that the relationship between 
brain ROIs of the target domain is similar to that of the source domain. 
Fig. 4 shows the result in the form of a brain connectivity network. Each 
node represents an ROI, and nodes were sorted by dividing the frontal 
lobe, temporal lobe, interbrain, and occipital lobe (OL) and parietal lobe 
(PL). In Fig. 4(a), the original AIBL shows many intra-region edges and 
few inter-region edges. On the contrary, in Fig. 4(c), there are many 
inter-regions edges in ADNI data. The proposed method shows the result 
of Fig. 4(b) by reducing the difference in these edge patterns. Particu-
larly, the adapted AIBL indicates that edges within the frontal lobe and 
the interbrain are decreased while between these regions increased. 
These results present that the connectivity mapping of the proposed 
method was well performed. 

5.1.3. Overall comparison 
At last, Fig. 4 shows the results of comparing the adapted brain 

volume features of AIBL derived by applying the proposed method with 
ADNI. Fig. 5(a) and (b) are diagrams of the differences between ADNI 
and original AIBL and adapted AIBL. Before domain adaptation, AIBL 

showed a wide difference in volume for each ROI compared to ADNI. 
The colors of the ROI shown in Fig. 5(a) are also varied. After domain 
adaptation, however, the difference in brain volume between the two 
data approaches zero in almost all ROIs, with Fig. 5(b) in a single color. 
Fig. 5(c) shows the difference from the original AIBL with respect to 
ADNI as a percentage for each ROI and sorted in descending order. There 
are six notable ROIs with a large difference over 50 % as large as 265 %, 
and most of them are related to the ventricle and substantia. This seems 
to be because these regions are located in the midline between the two 
hemispheres, so it is the deep part of the brain where a large deviation 
can occur depending on the imaging equipment. Nevertheless, in the 
proposed method, features were derived so that even these ROIs were 
the same as the source domain, showing differences close to zero. This 
result suggests that the proposed method performs robust domain 
adaptation. 

5.2. Results for AD conversion prediction 

In this subsection, we describe results for AD conversion prediction. 
For the diversified analysis of the effect of domain adaptation, we con-
ducted various comparison experiments assuming two scenarios. One is 
the case of unsupervised target domain where there is no label infor-
mation for prediction in the target data, so it is completely dependent on 
the source domain. The other is the case of supervised target domain 

Fig. 6. Classifier training methods for comparison experiments. The external-only classifier only trains the source label and performs prediction of target domain 
by domain adaptation. The internal-only classifier is a case in which the target domain constructs a model using only its own label. The simple-merged classifier 
utilizes the labels of both domains but does not perform domain adaptation, but in the external-adapted classifier, the target domain is adapted to the source, and in 
the internal-adapted classifier, the source domain is adapted to the target. 

Fig. 7. Results for comparison experiments on the unsupervised target domain. With the unlabeled target domain, the proposed method employs the external- 
only classifier. This includes domain adaptation of the target domain, utilizing classifiers trained on the source domain. The experiment compares the performance 
with and without domain adaptation. By applying the proposed method to the AIBL and OASIS as target domains using classifiers trained on the ADNI as the source 
domain, it is revealed that domain adaptation improves classification performance by 13.7% and 55.8% on average in the AIBL and OASIS, respectively. This 
highlights that the proposed method enhances classification performance on unsupervised target domains. 
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that the data has labels but additionally utilizes the source domain with 
a larger amount of information to improve prediction efficiency. 

5.2.1. Comparison methods for evaluation 
For the performance comparison, we designed five classifier training 

methods for these scenarios, as shown in Fig. 6. In this figure, the 
external-only classifier corresponds to the former scenario, and the other 
four to the latter. First, the external-only classifier indicates a model 
trained with the label of the source domain, which is external infor-
mation of the target domain. After the data in target domain is trans-
formed by domain adaptation, it is applied to the classifier to derive the 
prediction result. Next, the internal-only classifier is a model in which 
the target domain learns with its own labels without utilizing the source 
domain. On the contrary, the simple-merged classifier uses labels in both 
the target domain and the source, but domain adaptation for the target is 
not performed. The external-adapted classifier is a model in which the 
labels of both domains are utilized as the target domain is adapted to the 
source domain, and the internal-adapted classifier is a model in which 
the source domain is adapted to the target by reversing the direction of 
domain adaptation. Each classifier training method was applied to five 
machine learning algorithms mainly used for AD conversion prediction: 
logistic regression (LR) (Johnson, et al., 2014; Xiao, Cui, Qiao, Zheng, & 
Zhang, 2021), decision tree (DT) (Jin & Deng, 2018; Ritter, et al., 2015), 

neural network (NN) (Basaia, et al., 2019; Gao, et al., 2020), linear 
discriminant analysis (LDA) (Cho, Seong, Jeong, Shin, & Initiative, 
2012; Coupé, et al., 2015; Wolz, et al., 2011), and support vector ma-
chine (SVM) (Schmitter, et al., 2015; Wei, Li, Fogelson, & Li, 2016; 
Zhang, et al., 2015). The performance was measured by the area under 
receiving operating characteristic curve (AUC), and the entire experi-
ment was 100 times repeated. 

5.2.2. Results for prediction on the unsupervised target domain 
When there is no label in the target domain, prediction can be per-

formed using the external-only classifier. At this time, the target domain 
is transformed through domain adaptation, and the classifier learned 
from the source domain can be used for AD conversion prediction. In this 
experiment, the performance of the proposed method is compared to the 
case where domain adaptation is not applied, and the results are 
depicted in Fig. 7. AIBL and OASIS were applied as target domains to the 
classifier learned from ADNI, the source domain, respectively. As a 
result, it was found that the prediction results with domain adaptation 
for ADNI were 13.7 % and 55.8 % better on average in AIBL and OASIS, 
respectively, than without domain adaptation. Therefore, when pre-
diction is performed on the unsupervised target domain, high perfor-
mance can be derived by applying the proposed method. 

5.2.3. Results for prediction on the supervised target domain 
On the other hand, when there are labels in the target domain, 

prediction can be performed alone, but it can also receive the advantage 
of source information through domain adaptation. In this experiment, 
we compared internal-only classifier with three other classifiers which 
are trained in both source and target domains. Table 2 shows the results 
for comparison experiments on the supervised target domain. As a 
result, the internal-only classifier showed lower performance than other 
classifiers. Especially, the performance of the external-adapted classifier 
was the best in most experimental settings. Fig. 8 depicts the result for 
AUC comparison of internal-only and external-adapted classifiers. At 
first, Fig. 8(a) shows AUC comparison by algorithms used for prediction 
on the AIBL and OASIS. The diagonal line is a criterion for performance 
comparison, and when a point is located above the line, the vertical axis 
performs better. The external-adapted classifier performed better in all 

Table 2 
Results for comparison experiments on the supervised target domain.  

Dataset Algorithm Classifier 
Internal- 

only 
Simple- 
merged 

External- 
adapted 

Internal- 
adapted 

AIBL LR 0.532 0.542 0.555 0.494 
DT 0.406 0.485 0.483 0.637 
NN 0.658 0.565 0.694 0.488 
LDA 0.497 0.499 0.597 0.461 
SVM 0.478 0.580 0.554 0.470 

OASIS LR 0.778 0.794 0.663 0.642 
DT 0.724 0.650 0.766 0.749 
NN 0.769 0.682 0.827 0.821 
LDA 0.782 0.637 0.837 0.787 
SVM 0.735 0.750 0.808 0.499  

Fig. 8. AUC comparison of internal-only and external-adapted classifiers. The diagonal line is a criterion for performance comparison, and when a point is 
located above the line, the vertical axis performs better. (a) shows the AUC comparisons for the prediction on the AIBL and OASIS, indicating that the external- 
adapted classifier outperforms the internal-only classifier in most algorithms. (b) focuses on the neural network, demonstrating consistent superiority of the 
external-adapted classifier in both datasets, particularly in OASIS. These results highlight that the proposed method enhance the classification performance through 
domain adaptation, even if the label information exists in the target domain. 
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but one case. Next, Fig. 8(b) presents the individual AUC comparison of 
internal-only classifier and external-adapted classifier for neural net-
works which showed overall superior results compared to other algo-
rithms. In both data, the external-adapted classifier shows a general 
performance advantage, and its superiority is more stable in OASIS than 
AIBL. Therefore, even if there is label information in the target domain, 
it is possible to perform more successful prediction by performing 
domain adaptation to the source domain through the proposed method. 

5.3. Comparison experiments 

In this subsection, we compare the results for domain adaptation and 
AD conversion prediction with the existing studies which are described 
in Section 2. 

5.3.1. Experimental settings 
Comparison experiments were conducted in the same settings as the 

proposed method for a total of seven comparison methods including 
three SVD-based methods (DADS, MALRR, and MCNFE) and four DAT- 
based methods (DANN, PCAL, CDAN, and ADDA). Performance on 
domain adaptation was measured by KL-Divergence (KLD), and per-
formance on AD conversion prediction was measured by AUROC, ac-
curacy, and area under the precision-recall curve (AUPRC). 

5.3.2. Comparison results for domain adaptation 
Comparison results for domain adaptation are shown in Table 3. All 

methods, including the proposed method, yielded better KLDs when 
domain adapting OASIS to ADNI than AIBL. Among the comparison 
methods, it was found that the DAT-based methods transform the target 
domain more similarly to the source domain than the SVD-based 
methods. Nevertheless, the proposed method showed the best results 
for domain adaptation in both AIBL and OASIS datasets than the com-
parison methods. 

5.3.3. Comparison results for AD conversion prediction 
Comparison experiments for AD conversion prediction were per-

formed for both unsupervised and supervised target domains. The per-
formance of the comparison methods was compared with the best results 
obtained by the proposed method (NN for AIBL and LR for OASIS for the 
unsupervised target domains and NN for AIBL and LDA for OASIS for the 
supervised target domains). Table 4 shows the comparison results for AD 
conversion prediction. First, in Table 4(a), the proposed method shows 
better prediction performance than all comparison methods for the 

Table 3 
Comparison results for domain adaptation.  

Dataset SVD-based method DAT-based method Ours 
DADS MALRR MCNFE DANN PCAL CDAN ADDA 

AIBL 6.82 × 10-5 5.42 × 10-5 1.10 × 10-5 8.06 × 10-6 3.14 × 10-6 8.05 × 10-7 2.90 × 10-8 2.18 × 10-13 

OASIS 3.02 × 10-5 5.19 × 10-5 1.09 × 10-5 2.71 × 10-6 9.84 × 10-7 2.71 × 10-7 1.04 × 10-9 1.95 × 10-13  

Table 4 
Comparison results for AD conversion prediction.  

(a) Unsupervised target domain 

Method 
AIBL OASIS 

AUROC Accuracy AUPRC AUROC Accuracy AUPRC 

DADS 0.558 0.601 0.573 0.643 0.662 0.655 
MALRR 0.603 0.625 0.617 0.648 0.674 0.659 
MCNFE 0.627 0.659 0.631 0.691 0.736 0.713 
DANN 0.600 0.655 0.614 0.679 0.721 0.707 
PCAL 0.614 0.669 0.626 0.692 0.743 0.721 
CDAN 0.631 0.686 0.643 0.754 0.791 0.776 
ADDA 0.644 0.698 0.655 0.769 0.802 0.783 
Ours 0.658 0.707 0.683 0.773 0.810 0.796 

(b) Supervised target domain 

Method 
AIBL OASIS 

AUROC Accuracy AUPRC AUROC Accuracy AUPRC 

DADS 0.627 0.674 0.663 0.739 0.789 0.760 
MALRR 0.661 0.691 0.684 0.764 0.820 0.799 
MCNFE 0.671 0.714 0.707 0.768 0.824 0.802 
DANN 0.653 0.683 0.671 0.813 0.855 0.827 
PCAL 0.677 0.724 0.706 0.824 0.872 0.854 
CDAN 0.689 0.732 0.713 0.833 0.885 0.861 
ADDA 0.717 0.755 0.734 0.897 0.932 0.921 
Ours 0.694 0.740 0.729 0.837 0.890 0.863  

Table 5 
Parameter sensitivity analysis on one-way domain adaptation.  

(a) AIBL 

Parameter γD  

Value 10-3 10-2 10-1 100 101 102 103 

γC 

10-3 4.46 × 10-7 4.46 × 10-7 4.46 × 10-7 3.62 × 10-7 1.79 × 10-7 2.54 × 10-8 5.09 × 10-10 

10-2 4.41 × 10-12 4.44 × 10-12 4.46 × 10-12 4.49 × 10-12 4.51 × 10-12 4.46 × 10-12 3.90 × 10-12 

10-1 1.35 × 10-12 1.36 × 10-12 1.38 × 10-12 1.39 × 10-12 1.40 × 10-12 1.39 × 10-12 1.24 × 10-12 

100 4.78 × 10-13 4.86 × 10-13 4.94 × 10-13 5.02 × 10-13 5.09 × 10-13 5.11 × 10-13 4.62 × 10-13 

101 2.18 × 10-13 2.30 × 10-13 2.42 × 10-13 2.54 × 10-13 2.66 × 10-13 2.75 × 10-13 2.59 × 10-13 

102 3.44 × 10-7 3.44 × 10-7 3.44 × 10-7 3.44 × 10-7 2.57 × 10-8 3.18 × 10-10 3.22 × 10-12 

103 2.60 × 10-6 2.60 × 10-6 2.60 × 10-6 1.53 × 10-6 1.29 × 10-8 3.48 × 10-10 3.63 × 10-12 

(b) OASIS 

Parameter γD  

Value 10-3 10-2 10-1 100 101 102 103 

γC 

10-3 3.92 × 10-7 3.87 × 10-7 3.69 × 10-7 3.19 × 10-7 2.03 × 10-7 5.16 × 10-8 2.10 × 10-9 

10-2 2.69 × 10-11 2.69 × 10-11 2.69 × 10-11 2.69 × 10-11 2.69 × 10-11 2.67 × 10-11 2.51 × 10-11 

10-1 1.44 × 10-11 1.44 × 10-11 1.44 × 10-11 1.44 × 10-11 1.44 × 10-11 1.43 × 10-11 1.35 × 10-11 

100 7.95 × 10-12 7.95 × 10-12 7.96 × 10-12 7.96 × 10-12 7.96 × 10-12 7.91 × 10-12 7.46 × 10-12 

101 9.04 × 10-13 9.07 × 10-13 9.09 × 10-13 9.12 × 10-13 9.14 × 10-13 9.12 × 10-13 8.61 × 10-13 

102 1.61 × 10-8 1.61 × 10-8 1.61 × 10-8 1.61 × 10-8 1.72 × 10-9 1.97 × 10-11 1.95 × 10-13 

103 4.89 × 10-7 4.89 × 10-7 5.05 × 10-7 2.85 × 10-7 5.08 × 10-9 1.06 × 10-10 1.11 × 10-12  
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unsupervised target domains. Comparing the average values of all 
evaluation metrics measured in both AIBL and OASIS, the proposed 
method shows about 10 % better performance than the comparison 
methods. Among the comparison methods, the average performance for 
the DAT-based methods was measured to be about 8 % higher than the 
average performance for the SVD-based methods. On the other hand, the 
results for the supervised target domains shown in Table 4(b) indicate a 
slightly different aspect. The method that shows the best performance is 
the DAT-based ADDA, and the proposed method derives the next best 
performance. When comparing the average values of the evaluation 
metrics, ADDA shows about 4 % better results than the proposed 
method. Similar to the results for unsupervised target domains, the DAT- 
based method yielded about 7 % better prediction results on average 
than the SVD-based methods. 

6. Discussion 

In this section, the proposed method is discussed in terms of the 
performance, supplementation, and application. At first, in this study, 
the performance of each of the two components, one-way domain adap-
tation and AD conversion prediction, of the proposed method was evalu-
ated through various experiments. In one-way domain adaptation, we 
aimed at distribution matching and connectivity mapping so that the data 
distribution of the target domain and the connectivity between brain 
regions are similar to those of the source domain. These aims were 
implemented by training the adaptation matrix that reduces the differ-
ence between mean vectors and covariance matrices. As a result, the KL- 
divergence between source and target domains was dramatically 
decreased, and therefrom, the performance of AD conversion prediction 
could be improved as well. Even if there is no label information in the 
AIBL and OASIS datasets used as target domains, it was possible to 
derive 13.7 % and 55.8 % improved prediction results, respectively, 
through the proposed one-way domain adaptation. Unsurprisingly, 
higher performance was shown when the target domain contained la-
bels. Through comparison experiments, it was confirmed that the per-
formance of the proposed method for domain adaptation was superior to 
other methods. This result leads to the best prediction performance for 
the unsupervised target domains. On the other hand, for the supervised 
target domains, the proposed method showed the second-best perfor-
mance compared to the DAT-based method by a slight difference. 

Next, there were three supplementary points of the proposed method 
that we came to recognize. First, several hyperparameters in the objec-
tive function of the one-way domain adaptation need to be optimized. γD 
and γC in Equation (3), which are respectively combined with terms for 
implementing distribution matching and connectivity mapping, were 
experimentally selected within 

{
10− 3, 10− 2,10− 1, 100,101,102,103}. 

Table 5 shows the results for the parameter sensitivity analysis on one- 
way domain adaptation. From the result, it can be seen that the trend of 
performance change according to the change of each hyperparameter is 
not consistent. Therefore, the value of γD was extremely different in 
deriving the best domain adaptation results from the two datasets. 
Considering that the result of one-way domain adaptation has a signif-
icant effect on AD conversion prediction performance, the robustness of 
hyperparameters is the first issue to be addressed in the future work. 
Second, the proposed method was designed to apply a single public data. 
To supplement the insufficient in-house data more effectively, this 
method should be extended to enable utilizing multiple public data. Last, 
the one-way domain adaptation is limited to the linear transformation. 
For the more sophisticated matching with the public data, the non-linear 
transformation would be better than the linear. 

Although this study was conducted for a specific task on medical 
imaging data, the proposed method can be applied to various fields. The 
core of our method is to transform the information-poor target domain 
to be similar to the information-rich source domain while preserving the 
original properties of the source domain. This feature means that the 

transformed target domain is combined with the original source domain, 
so that any task previously performed in the source domain can be 
performed. without restrictions. This suggests that there is no need for 
restrictions or additional works caused by simultaneous transformation 
of two domains according to the pre-defined task. Therefore, the pro-
posed method is a well-generalized algorithm that can be flexibly 
applied to various fields or expert systems. 

7. Conclusion 

In this paper, we propose a novel method for domain adaptation to 
predict the AD conversion from MCI patients using MR images. The most 
pronouncing feature of our method is to only transform the in-house 
data (target domain) so that preserve the public data (source domain). 
This process prevents the re-training and the loss of rich information of 
the source domain, and therefrom, can guarantee the robustness of 
classification performance. Consequently, the prediction for the trans-
formed data of the AIBL and OASIS was performed on the classifier 
which trained by the labels of the ADNI, and the results showed the good 
performance including the significant improvement comparing with the 
prediction without the proposed method. Therefore, the proposed 
method can be applied to datasets in multiple sites, which have not 
sufficient information, and it is considered a useful method to perform 
successful AD conversion prediction with only a small amount of data. 

In sum, our main contributions are summarized as follows. (a) We 
tackle the inter-site heterogeneity problem comes from merging or 
integrating multisite MRI data to supplement the insufficiency of in- 
house data. (b) To tackle this problem, we propose the one-way 
domain adaptation which only transforms the in-house data to match 
the data distribution and the brain region connectivity with the public 
data. (c) The proposed method avoids the tedious re-training and the 
information loss of public data, for the change of in-house data. (d) We 
could validate that our method enables the small data to conduct the 
predictive task more efficiently and effectively by using the large data-
set, in the prediction of AD conversion from MCI patients on the famous 
brain MRI public datasets. 
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