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1 Many such systems are equivalent to a form of s

which information is propagated around the graph.
In many graph-based semi-supervised learning algorithms, edge weights are assumed to be fixed and
determined by the data points’ (often symmetric) relationships in input space, without considering direc-
tionality. However, relationships may be more informative in one direction (e.g. from labelled to unla-
belled) than in the reverse direction, and some relationships (e.g. strong weights between oppositely
labelled points) are unhelpful in either direction. Undesirable edges may reduce the amount of influence
an informative point can propagate to its neighbours – the point and its outgoing edges have been
‘‘blunted.” We present an approach to ‘‘sharpening” in which weights are adjusted to meet an optimiza-
tion criterion wherever they are directed towards labelled points. This principle can be applied to a wide
variety of algorithms. In this paper, we present one solution satisfying the principle, in order to show that
it can improve performance on a number of publicly available bench-mark data sets. When tested on a
real-world problem, protein function classification with four vastly different molecular similarity graphs,
sharpening improved ROC scores by 16% on average, at negligible computational cost.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Given sets of labelled and unlabelled data points, the task of
predicting the missing labels can under some circumstances be
aided by the information from unlabelled data points, for example
by using information about the manifold structure of the data in in-
put space. Many state-of-the-art methods implement a semi-super-
vised learning (SSL) approach in that they incorporate information
from unlabelled data points into the learning paradigm—see (Bel-
kin & Niyogi, 2003; Chapelle, Schölkopf, & Zien, 2006; Chapelle,
Weston, & Schölkopf, 2003; Shin, Tsuda, & Schölkopf, 2009; Sin-
dhwani, Niyogi, & Belkin, 2005; Soon-Ong, Smola, & Williamson,
2005; Tsuda, Shin, & Schölkopf, 2005; Zhu, Ghahramani, & Lafferty,
2003; Zhou, Bousquet, Weston, & Schölkopf, 2004). Despite their
many differences as regards both guiding philosophy and perfor-
mance, one thing common to most algorithms is the use of a ma-
trix of values representing the pairwise relationships between
data points. In graph-based SSL, the matrix of edge weights often
denoted as W reflects the points’ influence on each other,1 which
is an inherently directional concept. The graph may therefore in
principle be asymmetric. It is typically a sparse matrix. By contrast,
ll rights reserved.
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preading activation network in
in kernel-based methods like the TSVM (De Bie & Cristianini, 2004;
Joachims, 1999; Vapnik, 1998), the kernel K denotes the points’ sim-
ilarity to each other, an intrinsically symmetrical property.

When adopting the kernel approach, we can utilize the recent
approaches of learning the kernel matrix (Crammer, Keshet, & Sing-
er, 2003; Cristianini, Shawe-Taylor, & Kandola, 2002; Lanckriet,
Cristianini, Ghaoui, Bartlett, & Jordan, 2002; Sonnenburg, Rätsch,
Schäfer, & Schölkopf, 2006; Tsuda, Rätsch, & Warmuth, 2005). In
particular, the methods of Zhang, Yeung, and Kwok (2004) and
Bach and Jordan (2004) are focused on the use of unlabelled as well
as labelled data. Using a kernel method requires that the similarity
matrix satisfy the conditions of positive definiteness and symme-
try to be a valid kernel (Schölkopf & Smola, 2002). It will often
be a dense matrix. Most kernel- learning methods are computa-
tionally demanding because of the operations involved on dense
matrices – simply computing the product of two dense matrices al-
ready takes O(n3). It is possible to fit graph-based representations
of pairwise relationships into a kernel-learning framework. One
can directly calculate K from a graph using the diffusion kernel
method (Kondor & Lafferty, 2002), but this generally requires fairly
expensive computation. Alternatively one can simply define simi-
larity from the outset in terms of the graph, taking a simple for-
mula such as K = W>W—note that this already entails a decrease
in sparseness.

One of the merits of graph-based SSL lies in its computational
efficiency: learning can often be done by solving a linear system
with a sparse matrix W, which is nearly linear in the number of
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Fig. 1. Graph-based semi-supervised learning: a node is labelled either by ‘ +1’ or ‘
�1’, indicating the class to which it belongs. The relationship between nodes i and j
is represented as a weight value on the connecting edge, wij (for nodes depicted as
unconnected, the corresponding wij is zero. Graph-based semi-supervised learning
seeks to classify the unlabelled nodes marked as ‘? ’ through label propagation via
edges.
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non-zero elements in W (Spielman & Teng, 2004). To preserve this
advantage, it will be desirable that learning or manipulating W be
achieved directly, without going via the route of learning a graph-
based kernel matrix. To the best of our knowledge, there have been
relatively few approaches to learn the weights W of a graph, Zhu
et al.’s (2003) being a notable exception. They address the issue
of manipulating the edge weights, by a computationally intensive
procedure for learning the scaling parameters of the Gaussian
function that best aligns W with the data. The width parameters
reflect the importance of input features, which makes their ap-
proach useful as a feature selection mechanism.

In this paper, we present a method which is immediately
applicable to the weight matrix W. The proposed method is based
on the following intuition. In an undirected graph, all connections
are reciprocated and so the matrix of edge weights W is symmet-
ric. However, the importance of information flow can be implicitly
different: Some edges may convey more useful information in one
direction than in the reverse direction. Some edges may propagate
unhelpful information in either direction. And for some edges, it is
not yet available to draw a distinction on usefulness between one
direction and the reverse direction, so those should be left undi-
rected. To confirm this idea, we begin with the well-known
graph-based SSL formulation of Belkin, Matveeva, and Niyogi
(2004) using Tikhonov regularization. First, we re-formulate the
objective function in terms of W. Blockwise consideration of the
weight matrix will allow us to state a condition which solutions
W must satisfy if the objective function is to be optimized—there
are many such solutions, some of which will be trivial and not
lead to learning. Exploring the class of solutions, and developing
a basis for comparison of their potential generalization ability, is
beyond the scope of this paper and is left as an open problem.
However, we propose one very simple specific solution,
concordant with the logic already stated. Blockwise analysis of
the inverse matrix used to make predictions will show the impli-
cations of this solution for the unlabelled points. This in turn
makes clear the link between the Tikhonov regularization formu-
lation we started with and the harmonic function solution to the
Gaussian random field formulation as presented by Zhu et al.
(2003). The optimal solution suggested by our criterion recon-
structs the known labels without loss, as in Zhu et al. (2003),
while still incorporating a variable hyperparameter for smooth-
ness like that of Belkin et al. (2004).

The paper is organized as follows. In Section 2, we briefly intro-
duce the graph-based SSL algorithm under consideration. In Sec-
tion 3, we present the proposed idea starting from intuition to
mathematical foundation, and then provide one particular solu-
tion, showing the connection to an earlier work based on harmonic
function. In Section 4, we first show experimental results on
bench-mark datasets illustrating the effects before and after the re-
moval of the undesirable weights. We further extend our experi-
ments to a real-world problem of protein function prediction
based on graphs, a central challenge in recent bio-informatics re-
search. We show that the proposed method consistently raises
overall performance on protein function annotation. Finally, we
conclude with some remarks on future work.2
2. Graph-based semi-supervised learning

In the graph-based semi-supervised learning algorithm (Zhou
et al., 2004), a data point xi (i = 1, . . . ,n) is represented as a node i
in a graph, and the relationship between data points is represented
by an edge where the connection strength from each node j to each
2 The current paper is an extended version of the authors’ conference paper (Shin
Hill, & Raetsch, 2006).

3 We represent scalars as lower case, vectors as boldface lower case, and matrix as
uppercase. 0 (or 1) is a vector or matrix of variable-dependent size containing of all
zeros (or all ones).
,

other node i is encoded in element wij of a weight matrix W (see
Fig. 1). A weight wij can take a binary value (0 or 1) in the simplest
case. Often, a Gaussian function of Euclidean distance between
points, with length scale r, is used to specify connection strength:

wij ¼
exp � ðxi�xjÞ>ðxi�xjÞ

r2

� �
if i � j;

0 otherwise:

8<
:

The i � j stands for node i and j having an edge between them which
can be established either by connecting each point to its k nearest
neighbors for some k, or by connecting each node i to all other
nodes j for which kxi � xjk < r, i.e. connecting all points within a cer-
tain radial Euclidean distance r of each other.3 The labelled nodes
have labels yl 2 {�1,1}, while the unlabelled nodes have zeros
yu = 0. A graph-based semi-supervised learning algorithm will out-
put an n-dimensional real-valued vector f ¼ ½f >l f >u �

> ¼
ðf1; . . . ; fl; flþ1; . . . ; fn¼lþuÞ> which can be thresholded to make label
predictions on fl+1, . . . , fn after learning. It is assumed that (a) fi should
be close to the given label yi in labelled nodes, and (b) overall, fi

should not be too different from the fj of adjacent nodes (i � j).
One can obtain f by minimizing the following quadratic functional
(Belkin et al., 2004; Chapelle et al., 2003; Zhou et al., 2004):

min
f
ðf � yÞ>ðf � yÞ þ lf T Lf ; ð1Þ

where y = (y1, . . . ,yl,0, . . . ,0)>, and the matrix L, called the graph
Laplacian matrix (Chung, 1997), is defined as L = D �W where
D ¼ diagðdiÞ; di ¼

P
jwij. The first term corresponds to the loss func-

tion in terms of condition (a), and the second term represents the
smoothness of the predicted outputs in terms of condition (b). The
parameter l trades off loss versus smoothness. The solution of this
problem is obtained as

f ¼ ðI þ lLÞ�1y; ð2Þ

where I is the identity matrix.
The values of f are obtained by solving a large sparse linear sys-

tem y = (I + lL)f. This numerical problem has been intensively stud-
ied, and there exist efficient algorithms, of which computational
time is nearly linear in the number of non-zero entries in the coef-
ficient matrix (Spielman & Teng, 2004). Therefore, computation
gets faster as the Laplacian matrix gets sparser.



Fig. 3. The sharpened graph: In contrast to the original in Fig. 1, the sharpened
graph is no longer fully reciprocated and so the matrix of edge weights W becomes
asymmetric.
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3. Graph sharpening

3.1. Intuition on sharpening the edges

Before unfolding the details of graph sharpening, let us first
give an intuition about the proposed method. In an undirected
graph as in Fig. 1, all connections are reciprocated and so the ma-
trix of edge weights W is symmetric as in Fig. 2(a). However, when
W describes relationships between labelled and unlabelled points,
it is not necessarily desirable to regard all such relationships as
symmetric. That is, we may differentiate the importance of infor-
mation flow so far equally weighing all edges. First, some edges
may convey more useful information in one direction (e.g. from la-
belled to unlabelled) than in the reverse direction. Propagating
information in the reverse direction, from unlabelled to labelled,
may be undesirable since it allows points about which information
is uncertain to corrupt the source of information in the system.
Since we are already using the language of ‘‘points” and ‘‘edges”,
we will say that this causes the point and its outgoing edges to
be ‘‘blunted”, reducing their effectiveness. This is not necessarily
a bad thing. If we have a large enough number of labelled data
points in hand, we might wish to tolerate this phenomenon since
Fig. 2. Graph sharpening: (a) an original undirected (bi-directed) graph and its
symmetric weight matrix W. Note that in the interpretation of W, the row index
denotes the destination and the column index the source—so for example wij should
be read as ‘‘the weight of the edge from j to i (j ? i). (b) Edges from unlabelled to
labelled points (denoted as dotted arrows) are disconnected. (c) Edges between
oppositely labelled points are further removed. Sharpening leaves the edges
between unlabelled points intact.
it may accurately reflect the data manifold structure, and can have
a regularizing effect by reducing the damaging influence of labelled
points that are quite simply in the wrong place (for example,
through measurement error) or have the wrong label (due to label
noise). However, there are many problem settings (for example,
protein function prediction and other applications in the field of
bioinformatics) in which (a) there is a high degree of certainty
about the input space representation of each labelled point and
its label, and (b) the number of labelled points is low. In this situ-
ation, it is indicated to avoid blunting, thus to preserve the effec-
tiveness of information sources. Second, edges directly connecting
oppositely labelled points may propagate unhelpful information
in either direction. The smoothness condition in (1) plays the role
of forcing both predicted scores to be similar to each other, and
again, both important points, the very sources of information, are
blunted. Further, those edges unnecessarily incur a conflict of the
opposite flows in the area of a high certainty in the system. Third,
propagation of information between unlabelled points is differ-
ent—while some edges of the graph may be more helpful than oth-
ers in solving the overall problem, a priori we do not know which
these might be. Allowing the unlabelled points to harmonize with
their neighbours (thus implementing smoothness condition, com-
mon to most such learning approaches) is a desirable process.

Fig. 2 illustrates how this intuition is realized by the proposed
method. Fig. 2(a) shows an original graph of seven nodes (points)
and its (so far) symmetric weight matrix W. For simplicity, we
set the value of ‘1’ as a weight on every edge. Remember that, in
the interpretation of W, the row index denotes the destination
and the column index the source, and wij reads ‘‘the weight of
the edge from j to i (j ? i).” In Fig. 2(b), the edges from unlabelled
to labelled points wij (denoted as dotted arrows) are disconnected
where i belongs to the set of labelled points l :¼ {1,2,3} and j to the
set of unlabelled points u :¼ {4,5,6,7}. Fig. 2(c) presents the case of
connection between oppositely labelled points, w12 and w21.
Therefore, both edges are further removed from Fig. 2(b). Finally,
we obtain a sharpened graph in Fig. 3. Note that the weight matrix
becomes asymmetric, and the edges between unlabelled points re-
main intact.4 We will re-visit this intuition with a particular solution
followed a detailed mathematical foundation in the next section.
3.2. Optimal weight matrix

We now pose the general question with respect to the objective
function (1): What if W is not considered fixed? Is it possible to
4 Instead of disconnecting or removing an edge from W, we can penalize an
ndesirable edge weights by introducing a penalty term, wNEW

ij ¼ wij � dij where
6 dij 6 wij.
u
0
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change some or all of the wij such that our algorithm performs bet-
ter? To implement these ideas, we begin by re-formulating our
objective function in terms of W. The smoothness term of (1) can
be expressed as

lf >Lf ¼ f >y � f >f ; ð3Þ

by using f >(I + lL)f = f>y which follows from (I + lL)f = y from (2).
Plugging (3) into (1) we have

min
W

ðf � yÞ>ðf � yÞ þ lf >Lf ¼ ðf � yÞ>ðf � yÞ þ f >y � f >f

¼ y>y � y>f

¼ y>y � y>ðI þ lLÞ�1y: ð4Þ

The constant term y>y does not affect our optimization. Eliminating
this constant term and negating, (4) becomes

max
W

dðWÞ ¼ y>ðI þ lLÞ�1y

s:t: W P 0;
ð5Þ

where the non-negativeness constraint of W is introduced from the
natural assumption of semi-supervised learning. Given an undi-
rected graph, (5) is a convex problem, since W and hence
(I + lL)�1 are positive symmetric—a function z(A) = Ap of a positive
symmetric matrix A is convex for �1 6 p 6 0 or 1 6 p 6 2 (Boyd &
Vandenberghe, 2004). Since we wish to consider asymmetric W,
we cannot guarantee convexity. We could optimize W by a gradient
descent method, the derivative of (5) with respect to wij being equal
to by lgi(fi � fj), where g = (I + lL>)�1y and f is given as usual by (2).
However, without imposing some additional constraint, one can see
that the problem has trivial solutions since any diagonal W gives an
optimal value by leading (I + lL)�1 to the identity matrix. Removal
of all the weights clearly does not fit the goals of learning since no
generalization will be possible if no information is propagated be-
tween nodes.

Optimization must proceed under some constraints which re-
flect our prior assumptions about the problem. Consideration of
the block structure of the problem will allow us to implement
the intuition expressed in Section 3.1 and indicate parts of the
weight matrix W that can be optimized, without running foul of
the ‘‘no free lunch” limitation. First, note that the most part of

(5) that involve yu simply vanish since y ¼ yl
yu

� �
¼ yl

0

� �
. Accord-

ingly, (5) is simplified by (2) and becomes

max
W

dðWÞ ¼ y>l f l

s:t: W P 0;
ð6Þ

which implies that the objective is simply to maximize the dot
product of yl and fl with respect to weight matrix W. Given that
all fi must satisfy �1 6 fi 6 1 (Doyle & Snell, 1984; Zhu et al.,
2003), the solution that maximizes d(W) must clearly satisfy yl = fl.
Next, let us represent the weight matrix as a block matrix,

W ¼
Wll Wlu

Wul Wuu

� �
:

Reading Wlu as from unlabelled to labelled (u ? l), is still valid in
blockwise representation of W. For notational simplicity, let us also
define M = (I + lL), which has similar blockwise structure:

M ¼
Mll Mlu

Mul Muu

� �
¼

I þ lðDll �WllÞ �lWlu

�lWul I þ lðDuu �WuuÞ

� �
: ð7Þ

Rearranging (2) in terms of y and writing it in a similar blockwise
fashion, we obtain:

yl

yu

� �
¼

Mll Mlu

Mul Muu

� �
f l

f u

� �
: ð8Þ
Considering only the top row, we obtain the following relationship
between yl and fl:

yl ¼ I þ lðDll �WllÞ½ �f l � lWluf u; ð9Þ

from which we see by substituting the optimal solution f l = yl, that
the condition

ðDll �WllÞyl ¼Wluf u; ð10Þ

must hold. Equally, any solution that satisfies (10) is also optimal.
This begins to show the role of the individual blocks of W in finding
a solution. To express (10) solely in terms of block matrices, we use
the block inverse of M,

M�1 ¼
M�1

ll þM�1
ll MluS�1MulM

�1
ll �M�1

ll MluS�1

�S�1MulM
�1
ll S�1

" #
; ð11Þ

where S is the Schur complement (see Boyd & Vandenberghe, 2004)
of Mll in M,

S ¼ Muu �MulM
�1
ll Mlu: ð12Þ

With f l = yl, this yields

M�1
ll þM�1

ll MluS�1MulM
�1
ll � I

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

yl ¼ 0; ð13Þ

from which we see that there exist a potentially large class of solu-
tions that satisfying this condition—the right-hand side of (10) may
be matched to the left through manipulation of any of the four
blocks of W, to affect f u.

3.3. An ad hoc solution

Exploring every class of solutions for the complex system (13) is
currently regarded as intractable and the full exploitation is left as
an open problem. However, we can specify one simple solution as a
preliminary work, concordant with the intuition previously stated.
So to speak, we may focus on a subset of solutions by confining (a)
in (13) to be a zero matrix 0 although we know that many other
solutions can be obtained from non-zero matrices.

As mentioned earlier, any W as a form of diagonal matrix pro-
duces optimal value of (5) or (6). More concisely speaking, both
Wll and Wuu can be any diagonal matrices, while Wlu and Wul

should be null matrices. However, no one wants to compensate a
null vector of f u as a return for holding the condition (10). Thus,
let us selectively decide which block matrix can be null matrix or
diagonal, by examining

f u ¼ �S�1MulM
�1
ll yl: ð14Þ

First, note that Mul should not be a null matrix thus Wul – 0 from
(7), fu will be 0 otherwise. Second, M�1

ll will not matter unless Mll

is singular, which implies we can regard Wll as a diagonal matrix
and Wlu as a null matrix. Remember the relationship in (7), the diag-
onal matrix Dll is established from the row sum of Wll and Wlu. Then
Mll becomes an identity matrix. Next, let us take S�1 into consider-
ation. With Wll as a diagonal matrix, Wlu as a null matrix, and Wul as
a non-zero matrix, S defined in (12) will not be singular:

S ¼ I þ lðDuu �WuuÞ:

This allows Wuu to be a diagonal matrix. However, one should be
careful of setting Wuu be a diagonal matrix which will lead to

f u ¼ lWulyl: ð15Þ

This means we cannot obtain the output prediction for the unla-
belled data points unless they are directly connected to labelled
points. Remembering that W is a sparse matrix in graph-based
semi-supervised learning, we hardly expect full connection from la-



Table 1
Summary of the five bench-mark data sets used.

Name Points Dims Comment

Digit1 1500 241 Artificial images
USPS 1500 241 2s and 5s vs. rest
COIL2 1500 241 Images
BCI 400 117 Small, noisy
g241c 1500 241 Artificial
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belled to unlabelled points. Therefore, we should not allow Wuu to
be a diagonal matrix. Note that if the row sum of Wul is a full vector,
(15) stands for output prediction by a similar approach to k-nearest
neighbour method. To summarize, by setting Wll to a non-negative
diagonal matrix (including null matrix) and Wlu to 0,

Ws ¼
diagonal matrix 0

Wul Wuu

� �
; ð16Þ

we can satisfy the condition (10) but still expect to obtain meaning-
ful output prediction for unlabelled data points

f u ¼ lðI þ lðDuu �WuuÞÞ�1Wulyl: ð17Þ

In spreading activation network terms, (17) is equivalent to activity
being propagated from labelled to unlabelled data once (Wulyl) to set
the initial condition for subsequent spreading activation among
u M u, analogous to (2) but now excluding the labelled points. This
also has intuitive appeal. First, for labelled points, it assures
fl = yl—there is no loss of information on labelled data points. By dis-
connecting unnecessary and unhelpful edges, we allow the labelled
points and their outgoing edges to stay ‘‘sharp” in their influence on
the rest of the network. Second, for unlabelled points, it preserves
an important principle of SSL, namely exploitation of the manifold
structure inferred from unlabelled data points, by keeping the edges,
u M u and l ? u, of W.

3.4. Harmonic functions revisited

The condition (10) provides a link to the formulation of Zhu
et al. (2003), which characterized semi-supervised learning in
terms of a harmonic function solution to an energy minimization
problem. Particularly, the solution (17) is very similar to their
solution

f u ¼ ðDuu �WuuÞ�1Wulyl;

to which our (17) converges as l becomes arbitrarily large—infinite
smoothness. But note that their optimization proceeds from the a
priori assumption that labels should be reconstructed without loss,
f l = yl. Unfortunately, in the general formulation (1) of semi-super-
vised learning, it is not natural to hold this assumption due to the
smoothness term. In the light of that, (10) plays a role of bridge be-
tween two methods (Belkin et al., 2004 & Zhu et al., 2003): we begin
with the formulation of Belkin et al. (2004) and reach at the mini-
mum-energy solution of Zhu et al. (2003) without the necessity of
assuming fl = yl a priori. Note that in our formulation hyperparame-
ter l naturally remains from (2) through to (17), which can be re-
garded as an advantage over a harmonic function solution since l
can be tuned to the needs of each particular learning problem, i.e.,
setting different values of l depending on degree of noise in a
weight matrix.

4. Experiments

We compared the performance of the sharpened solution (17)
from Ws and the original (2) from W, using five bench-marking
data sets and a biological data set. Hereafter, the original will
be used as an abbreviation for the original graph or the perfor-
mance of the original solution or the original method depending
on the context, and the sharpened likewise.

4.1. Bench-marking problems

4.1.1. Data
Five data sets were taken in our experiment from http://

www.kyb.tuebingen.mpg.de/ssl-book/ that has been used as
bench-marking site for the purposes of testing various semi-super-
vised learning algorithms (Chapelle et al., 2006). The data sets
encompass both artificial and real data in a number of different
settings, and are summarized in Table 1. More details, and the data
sets themselves, are available at the web-site. Each data set has
binary labels, and comes with 24 pre-determined splits, i.e. sets
of indices dictating which data points are to be labelled. Of these,
12 splits each contain 10 randomly chosen labelled points (at least
one in each class), and the other 12 splits each contain 100 ran-
domly chosen labelled points. For each data set, an initial undi-
rected edge graph W was constructed by making a connection
between each point and its k nearest neighbours as measured by
Euclidean separation in the input space, with k set either to 10 or
to 100. Weights were then set for each edge according to the func-
tion wij ¼ expð�s2

ij=r2Þ of edge length sij, with r set either to 10
times or to 1 times the median length of the connected edges
(the former setting ensured in practice that all connected weights
were roughly equal, and close to 1, and the latter setting ensured
some variation in the weights). For each of the available splits,
we obtain solutions (2) and (17) for four different smoothing
parameter values l 2 {0.1,1,10,100}, and record the ROC scores
of the unlabelled outputs fu with respect to the true labels.

4.1.2. Results
The results are summarized in Fig. 4. Each pair of subplots cor-

responds to one of the five data sets, with results from the splits
with 10 labelled points on the left and from the splits with 100 la-
belled points on the right. The grey points show the comparison
between the two methods for each of 192 runs (=2 settings of
k � 2 settings of r � 4 settings of l � 12 random splits). In addi-
tion, red crosses show the best setting for each method—perfor-
mance of the sharpened on the 12 splits under the {k,r,l}
setting for which method yielded the best mean ROC score across
splits, against performance of the original on the 12 splits under
its best setting. We can see from Fig. 4(a) that sharpening leads to
performance that is equal to or better than the original. In some
cases the improvement is small in magnitude, but it is consistent in
sign. For data sets USPS, COIL2 and BCI, in particular, we clearly
see that the majority of grey points lie above the diagonal, indicat-
ing that, for a randomly chosen hyperparameter setting among
those explored, sharpening is very likely to result in easier model
selection and improvements in performance. The sharpening mod-
ification tends to gain more improvement when more labelled
points are given. In the subplots of the right column (of 100 la-
belled points), consistently across the random splits, the best per-
formance obtained by the sharpened is better than the best
performance obtained by the original. We illustrate the algo-
rithms’ hyperparameter dependence in Fig. 4(b). From this repre-
sentation, we see that the performance of the sharpened is
generally equal to or better than the original. We also see that,
for data sets USPS, COIL2 and BCI, one of the sharpening’s
advantages lies in its relative insensitivity to the values of smooth-
ness-loss tradeoff parameter l. This relative insensitivity is a desir-
able property in situations where correct hyperparameter selection
is a hit-and-miss affair. Table 2 shows the best ROC scores and the
results of the Wilcoxon signed-ranks test (see Demsăr, 2006). Con-
sidering the best averaged ROCs, the highest scores (the numbers
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Fig. 4. Results: (a) ROC scores for the sharpened against those for the original, across 12 random splits of the data in each panel. Results are shown for all hyperparameter
settings (grey points) and for each method’s best hyperparameter setting (red crosses). (b) Hyperparameter dependence of the sharpened using modified weight matrix Ws

(open diamonds) and for the original using W (filled circles). Mean ROC scores across the 12 splits are shown as a function of l (on the abscissa) and k (blue-solid for k = 10,
green-dashed for k = 100). Results are only shown for r = 10 (results for r = 1 follow a roughly similar pattern). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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in boldface in the second column) are obtained by the sharpened
in 9 out of the 10 cases, with almost similar performance being at-
tained by both methods in the remaining one. The third column
compares the two methods in frequency of outperformance for



Table 3
Fifteen functional Gene Ontology terms from the category ‘Molecular function’.
Among 20 GO terms in Hou et al. (2005), five terms having fewer than ten annotated
proteins were excluded from our experiment. The number in parentheses represents
the number of labelled proteins.

Table 2
Summary of the results for the five data sets.

Datasets Best ROC score Frequency of outperformance (#) p-Value

original sharpened original sharpened

Digit1 10 labelled 0.9713 0.9710 200 184 0.6280
100 labelled 0.9981 0.9984

USPS 10 labelled 0.8544 0.8760 107 277 0.0000
100 labelled 0.9695 0.9883

COIL2 10 labelled 0.7324 0.7449 172 212 0.0006
100 labelled 0.9839 0.9850

BCI 10 labelled 0.5325 0.5339 136 248 0.0000
100 labelled 0.5751 0.5829

g241c 10 labelled 0.6205 0.6309 173 211 0.0564
100 labelled 0.7577 0.7751

Total 788 1132 0.0000
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the 384 (=2 � 192) paired ROC comparisons per dataset. In 4 out of
the 5 datasets, the sharpened outperformed the original. The p-
values in the last column statistically present the significance of
outperformance of the sharpened.
GO term Molecular function

0003677 DNA binding (137)
0005515 Protein binding (49)
0016491 Oxidoreductase activity (39)
0005524 ATP binding (95)
0003723 RNA binding (50)
0006118 Electron transport (87)
0003676 Nucleic acid binding (63)
0003824 Catalytic activity (57)
0005198 Structural molecule activity (22)
0005509 Calcium ion binding (32)
0008270 Zinc ion binding (56)
0005489 Electron transporter activity (37)
0004871 Signal transducer activity (18)
0004672 Protein kinase activity (29)
0004867 Serine-type endopeptidase inhibitor activity (15)
4.2. A real-world problem: protein function prediction

The prediction of biological functions of proteins is a central
challenge in modern biology but few genomic or proteomic data
have detailed annotations due to the demanding cost and time re-
quired to obtain this information (Friedberg, 2006). To aid the
function annotation of proteins via machine learning, a natural ap-
proach is to take protein networks (graphs) as input – the most
common representational form of the relationship between pro-
teins, of which nodes depict proteins and edges represent similar-
ities between protein pairs. Similarity values on edges may come in
many forms, ranging from genomic and molecular to cellular and
tissue contexts based on sequence or structure comparisons (Adai,
Date, Wieland, & Marcotte, 2004; Friedberg & Godzik, 2005; Hou,
Jun, Zhang, & Kim, 2005; Yona, Linial, & Linial, 1999), and there
may exist noise because of inherent errors during wet-lab experi-
ments or measurements. The need of this circumstance is perfectly
matches to the goal of sharpening – accuracy improvement by
removing unhelpful edges from graphs.
4.2.1. Data
Protein chains were obtained from the PDBselect25 list (version

October 2004), where any pair shares no more than 25% sequence
identity. Functional information was assigned in terms of the Gene
Ontology (GO) in the category ‘Molecular function’ and mapped
through the gene ontology annotation database (GOA PDB 24.0).
Of all PDBselect25 chains, 599 proteins shared at least one of the
20 highly populated GO terms as in Hou et al. (2005), however, five
GO terms having only a few labelled proteins (fewer than 10) were
excluded from our experiment. Therefore, our experiment became
15 binary-class classification problems, determining membership
or non-membership of unannotated (unlabelled) proteins for the
respective GO terms. The 15 GO terms are presented in Table 3.

To generate weighted edges between nodes (or proteins), we
used four different computational measures of molecular similar-
ity. Each measure assigned to every protein pair (i, j) a positive
weight (0 6 wij 6 1) meaning the degree of molecular similarity
between chain i and j. The four different similarity measures are
Basic Local Alignment and Search Tool (BLAST, Altschul, Gish, Mill-
er, Myers, & Lipman, 1990), the standard approach to alignment of
primary sequence which resulted in a degree of sequence identity;
length-corrected Contact Metric (CM, Lisewski & Lichtarge, 2006), a
metric-based similarity score by considering vector representa-
tions of contacts from the entire tertiary structure; Fast Alignment
and Search Tool (FAST, Zhu & Weng, 2005), an accurate and com-
putationally efficient 3D geometrical alignment algorithm calculat-
ing positive similarity scores; Evolutionary Trace Annotation (ETA,
Kristensen et al., 2006), a method that measures similarity based
on local similarity of protein substructure, specifically 3D-tem-
plates that are small structural motifs of evolutionarily important
residues identified by the evolutionary trace method (Lichtarge,
Bourne, & Cohen, 1995). Our choice represented all currently and
commonly used approaches to protein similarity measurement
(Watson, Laskowski, & Thornton, 2005): Sequence alignment
(BLAST), global 3D alignment (FAST), alignment-independent vec-
tor based approaches (CM), and local 3D alignment of small motifs
(ETA). An edge weight from BLAST/CM/FAST is a continuous value
while that of ETA is a binary value. A detailed description can be
found in Shin, Lisewski, and Lichtarge (2007).

4.2.2. Results
Since a protein can belong to several GO categories, we posed a

binary-class classification problem for each GO term in Table 3. For
each GO term, we calculated the fivefold cross-validation (5CV)
ROC score as a performance measurement. We examined the per-
formance change in terms of original vs. sharpened for the four
individual graphs obtained from BLAST, FAST, CM, and ETA, respec-
tively. The value of the smoothing parameter was obtained by 5CV
searching over l 2 {0.1,1,5,10,50,100}, and the results were com-
pared at their best parameters.
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Fig. 5. Positive effect of sharpening in pairwise ROC score comparison of the sharpened vs. the original: The four graphs are from (a) BLAST, (b) CM, (c) FAST, and (d)
ETA, respectively. More dots in upper diagonal half indicate that the method in vertical axis outperforms the other assigned in the horizontal axis; Most dots of 75 ROC pairs
per graph are in the upper diagonal. The p-values (from sign tests) represent the statistical deviation from a random distribution of dots in the upper and lower half.

Table 4
ROC scores of individual graphs: Boldface stands for the higher score between the original and the sharpened. In most comparisons, the sharpened gave a higher ROC score.

GO term BLAST CM FAST ETA

original sharpened original sharpened original sharpened original sharpened

0003677 0.7134 0.7132 0.6432 0.6445 0.6507 0.6547 0.5056 0.5020
0005515 0.6952 0.7640 0.4608 0.7313 0.5257 0.7832 0.4297 0.4853
0016491 0.4130 0.7176 0.7480 0.7645 0.6393 0.7263 0.5337 0.5523
0005524 0.5586 0.5619 0.4861 0.5167 0.5486 0.6317 0.5736 0.5849
0003723 0.5989 0.5919 0.4094 0.5620 0.4283 0.6185 0.4558 0.4578
0006118 0.6814 0.7368 0.6101 0.6279 0.6725 0.7152 0.5700 0.5969
0003676 0.7012 0.7206 0.5593 0.6827 0.5512 0.6910 0.4494 0.4776
0003824 0.6008 0.7985 0.7561 0.7524 0.6965 0.8104 0.4542 0.4498
0005198 0.6461 0.7126 0.6674 0.7435 0.6761 0.6387 0.5291 0.5735
0005509 0.5932 0.7478 0.4994 0.5575 0.7133 0.8204 0.5614 0.5829
0008270 0.7402 0.7588 0.5894 0.6549 0.6015 0.6734 0.4998 0.5200
0005489 0.5923 0.8395 0.3633 0.5883 0.6179 0.8207 0.5865 0.5888
0004871 0.6787 0.7391 0.3948 0.5598 0.3701 0.8351 0.7517 0.7408
0004672 0.6004 0.5463 0.5137 0.6561 0.6147 0.7284 0.6421 0.6695
0004867 0.8276 0.9178 0.7529 0.9293 0.7563 0.8828 0.5293 0.5563

Avg. 0.6427 0.7244 0.5636 0.6648 0.6042 0.7354 0.5381 0.5559
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Fig. 6. ROC score increase by sharpening: an ROC score increase by sharpening was calculated with (sharpened � original) � original � 100%. A bar in a panel
represents the individual increase of ROC score per GO term (class). A solid line stands for the average ROC increase across the 15 GO terms, and a dotted line for the
corresponding standard deviation. The results show that sharpening upgrades the ROC scores of the originals by 14.55% (±21.27), 21.21% (±20.55), 25.73% (±31.27), and
3.52% (±3.87) for BLAST, CM, FAST, and ETA, respectively.
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Fig. 5 shows the distribution of 75 (=15 GO terms � 5 CVs)
ROC score pairs of the original vs. the sharpened per graph.
Most dots are scattered above the diagonal, thus indicating better
performance of the sharpened against original. For all four
graphs, a sign test rejected, at a high level of significance, the null
hypothesis that the distribution would be evenly scattered above
and below the diagonal (p-values are shown in the insert in each
panel). Table 4 compares the ROC scores averaged over the five
cross-validation folds. Fig. 6 verifies how sharpening upgrades
the performance of the original. We calculated the ROC
score increase with the formula, (sharpened � original) �
original� 100%. The results show that sharpening signifi-
cantly contributes to ROC score; With sharpening, for instance,
one can increase the original ROC score of the BLAST graph by an
average of 14.55%, with a standard deviation of 21.27% across the
15 GO terms. Similarly, we see improvements of 21.21% (±20.55),
25.73% (±31.27), and 3.52% (±3.87) for CM, FAST, and ETA, respec-
tively. Note that sharpening does not include any additional
parameters, nor does it require computation. Rather, it makes
the time for solving the linear system in (2) shorter since the
Laplacian matrix is made sparser. The computation time for an
original graph was nearly trivial (less than 0.001 cpu second with
MATLAB in a standard 1500 MHz PC with 1 GByte of memory),
and it became further faster with sharpening (less than
0.0003 cpu second).
5. Conclusion and discussion

Graph sharpening for graph-based semi-supervised learning
methods is a formal yet intuitive approach for disconnecting unde-
sirable edges in graphs: without resorting to heuristics, sharpen-
ing yields a sparser graph that contains less noise and, in turn,
reduces computational expense and improves prediction with no
additional parameters. We analyzed an optimal condition for the
weight matrix W in blockwise fashion, giving us an intuition of
where and how to adjust graph weights in order to eliminate unde-
sirable flow of information in graphs. For labelled points, sharp-
ening ensures that the predicted output equals its given label:
there is no loss of information on labelled data points. For unlabelled
points, it preserves the principle of semi-supervised learning: pre-
diction with manifold structure for unlabelled data points. This allows
us to enjoy the best of both worlds: improved performance due to
sharpening of previously blunted labelled points and edges (as is
also the case for Zhu et al. (2003)) and the ability to explore differ-
ent smoothing settings in search of the best generalization perfor-
mance (as in Belkin et al., 2004). Graph sharpening particularly
works more effectively when a graph is noisy, which can often
be the case in many practical problems, for instance, biological net-
works of proteins as in our experiments.

This paper motivates possible future studies. For the sake of
analytical convenience, the present version of sharpening takes
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a very simple, conventional semi-supervised framework as its ba-
sis, and only takes one particular solution. However, incorporated
into more sophisticated state-of-the-art algorithms, it has consid-
erable potential to improve the original’s base performance. And
further, there exist solution classes where more various applica-
tions could be exploited. For example, the creation rather than
elimination of graph edges could lead to discovery of novel rela-
tionships between nodes.
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