
Vol. 23 no. 23 2007, pages 3217–3224BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm511

Systems biology

Graph sharpening plus graph integration: a synergy that

improves protein functional classification
Hyunjung Shin1,*,†, Andreas Martin Lisewski2,† and Olivier Lichtarge2
1Department of Industrial & Information Systems Engineering, Ajou University, San 5, Wonchun-dong, Yeoungtong-gu,
443—749, Suwon, Korea and 2Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor
Plaza, Houston, Texas 77030, USA

Received on May 4, 2006; revised on August 24, 2007; accepted on October 8, 2007

Advance Access publication October 31, 2007

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Predicting protein function is a central problem

in bioinformatics, and many approaches use partially or fully

automated methods based on various combination of sequence,

structure and other information on proteins or genes. Such

information establishes relationships between proteins that can

be modelled most naturally as edges in graphs. A priori, however,

it is often unclear which edges from which graph may contribute

most to accurate predictions. For that reason, one established

strategy is to integrate all available sources, or graphs as in graph

integration, in the hope that the positive signals will add to each

other. However, in the problem of functional prediction, noise, i.e. the

presence of inaccurate or false edges, can still be large enough that

integration alone has little effect on prediction accuracy. In order to

reduce noise levels and to improve integration efficiency, we present

here a recent method in graph-based learning, graph sharpening,

which provides a theoretically firm yet intuitive and practical

approach for disconnecting undesirable edges from protein similarity

graphs. This approach has several attractive features: it is quick,

scalable in the number of proteins, robust with respect to errors and

tolerant of very diverse types of protein similarity measures.

Results: We tested the classification accuracy in a test set of 599

proteins with remote sequence homology spread over 20 Gene

Ontology (GO) functional classes. When compared to integration

alone, graph sharpening plus integration of four vastly different

molecular similarity measures improved the overall classification by

nearly 30% [0.17 average increase in the area under the ROC curve

(AUC)]. Moreover, and partially through the increased sparsity of the

graphs induced by sharpening, this gain in accuracy came at

negligible computational cost: sharpening and integration took on

average 4.66 (�4.44) CPU seconds.

Availability: Software and Supplementary data will be available on

http://mammoth.bcm.tmc.edu/

Contact: shin@ajou.ac.kr or lisewski@bcm.edu

Supplementary information: Supplementary materials are available

at Bioinformatics online.

1 INTRODUCTION

The prediction of biological function is a central challenge in

modern biology since few genomic or proteomic data have

detailed annotations (Friedberg, 2006). A new class of computer

aided solutions to this problem is currently emerging that aims

to integrate diverse sources of relevant information, rather than

relying only on single methods that have specific limitations

(Friedberg et al., 2006; Laskowski et al., 2005; Pal and

Eisenberg, 2005). Function information may come in many

forms, ranging from genomic and molecular to cellular and

tissue contexts. The unprecedented availability of data from

primary to tertiary protein structure in particular motivated

many methods that use computational comparisons of specific

molecular attributes to define functional relationships (Watson

et al., 2005). From this, a clearer signal for function prediction

may emerge by considering multiple relevant relationships.
A natural model of relationships between proteins is a

network (or graph), where nodes depict genes or proteins and

edges represent their possible interactions or correlations

(Kanehisa et al., 2004; Uetz et al., 2000; von Mering et al.,

2002) (see Fig. 1). Among these there are networks of weighted

edges that evaluate molecular similarity between protein

pairs extracted from sequence or structure comparisons and

classify or predict protein function (Adai et al., 2004; Friedberg

and Godzik, 2005; Hou et al., 2005; Yona et al., 1999). Protein

function prediction can benefit by combining a diverse set

of similarity measures from protein sequences, physical

interactions, gene regulatory networks and metabolic path-

ways, etc. And there have been such approaches to combining

multiple networks, for instance, majority vote (Hishigaki et al.,

2001; Schwikowski et al., 2000), Bayesian networks (Deng

et al., 2003), discriminative learning methods (Lanckriet et al.,

2004a; Vert and Kanehisa, 2003), probabilistic integration by

log-likelihood scores (Lee et al., 2004) and semidefinite

programming (SDP) based SVM method (Lanckriet et al.,

2004b), etc. Recently, it was shown that graphs based on semi-

supervised learning (Chapelle et al., 2006; Zhou et al., 2004)

yield better classification performance for sequence similarity

networks than conventional local sequence comparison

(Noble et al., 2005). This suggested that graph-based semi-

supervised learning can capture global network information
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that is functionally relevant. Later, and in a more general
approach, multiple protein networks were then combined into
a single computationally efficient semi-supervised learning
problem, and this further not merely improved functional

classification over individual networks but also enormously
reduced computation time when compared with other state-of-
the-art methods for multiple networks (Tsuda et al., 2005).

Here, we further extend these ideas to improve the anno-
tation of protein function based on graphs. Starting from a
diverse set of protein similarity measures, some that are

standard and based on sequence and others that are more
novel and based on structure, we apply two most recent graph-
based algorithms in machine-learning field. Compared to

previous work on graph integration, the novelty of this
approach lies in taking into explicit account the directionality
of edges in each graph through a method that we call

graph sharpening, since it effectively eliminates those edges
that tend to corrupt functional information represented in
the underlying network. With a test set of 15 out of 20

functional GO terms among 599 non-redundant protein
structures from the PDBselect25 list (Hobohm and Sander,
1994), we show that sharpening and integration raise the
overall classification performance by nearly 30%. In absolute

values, an average increase of the AUC—the area under the
Receiver Operating Characteristic (ROC) curve by 0.17 up to a
level of 0.75.

This article is organized as follows. First, we introduce
graph-based semi-supervised learning in Section 2. In Section 3,
the basic idea and some elements of the mathematical frame-

work behind graph sharpening are explained (Shin et al., 2006).
In Section 4, we present a specific graph-integration approach
(Tsuda et al., 2005). Then, we demonstrate how these methods

can be successfully applied to protein function prediction
(Section 5). We conclude with some future work remarks.

2 GRAPH-BASED LEARNING

In the graph-based semi-supervised learning algorithm
(Zhou et al., 2004), a data point xi (i ¼ 1,. . ., n) is represented

as a node i in a graph, and the relationship between data points
is represented by an edge where the connection strength from
each node j to each other node i is encoded in element wij of a

weight matrix W. A weight wij can take a binary value (0 or 1)
in the simplest case. Often, a Gaussian function of Euclidean
distance between points, with length scale �, is used to specify

connection strength:

wij ¼ exp
�
ðxi�xj Þ

>ðxi�xj Þ

�2

� �
if i � j;

0 otherwise:

8<
:

The i� j stands for node i and j having an edge between them
that can be established either by k nearest neighbors or by

Euclidean distance within a certain radius r, ||xi � xj||
25r.1

The labelled nodes have labels yl 2 {� 1,1}, while the
unlabelled nodes have zeros yu ¼ 0. Our algorithm

will output an n-dimensional real-valued vector

f ¼ ½ f >l f >u �
>
¼ ð f1; . . . ; fl; flþ1; . . . ; fn¼ lþuÞ

>, which can be

thresholded to make label predictions on fl¼ 1,. . ., fn after

learning. It is assumed that (a) fi should be close to the given

label yi in labelled nodes, and (b) overall, fi should not be too

different from the fj of adjacent nodes (i� j). One can obtain f

by minimizing the following quadratic functional (Belkin et al.,

2004, Chapelle et al., 2003; Zhou et al., 2004):

min
f
ð f � y Þ>ð f� yÞ þ �f TLf ð1Þ

where y ¼ ( y1,. . .,yl, 0,. . .,0)
>, and the matrix L, called the

graph Laplacian matrix (Chung, 1997), is defined as

L ¼ D � W where D ¼ diag(di), di ¼
P

j wij. The first term

corresponds to the loss function in terms of condition (a), and

the second term represents the smoothness of the predicted

outputs in terms of condition (b). The parameter � trades off

loss versus smoothness. The solution of this problem is

obtained as

f ¼ ðIþ �LÞ�1y ð2Þ

where I is the identity matrix.

3 GRAPH SHARPENING

Now we present a method that is directly applicable to the

weight matrix W, and which is based on the following intuition:

in an undirected graph as in Figure 1, all connections are

reciprocated and so the matrix of edge weights W is symmetric

as shown in Figure 2a. However, when W describes relation-

ships between labelled and unlabelled points, it is not necessarily

desirable to regard all such relationships as symmetric. That is,

we may differentiate the contribution of all edges to information

flow by not weighing them equally. First, some edges may

convey more useful information in one direction (e.g. from

labelled to unlabelled) than in the reverse direction. Propagating

Fig. 1. A graph model of relationships between proteins. Nodes depict

genes or proteins and edges represent their possible interactions or

correlations, e.g. molecular similarities extracted from sequence or

structure comparisons. An annotated protein is labelled either by ‘þ 1’

or ‘� 1’, indicating either it belongs to a particular functional class or

not. Graph-based function prediction seeks to classify the unannotated

(unlabelled) proteins marked as ‘?’.

1We represent scalars as lower case, vectors as boldface lower case and
martrices are uppercase. 0 (or 1) is a vector or matrix of variable-
dependent size containing of all zeros (or ones).
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information in the reverse direction, from unlabelled to labelled,

may be undesirable since it allows points about which

information is uncertain to corrupt the source of information

in the system. Since we are already using the language of ‘points’

and ‘edges’, we will say that this causes the point and its

outgoing edges to be ‘blunted’, reducing their effectiveness.

There are many problem settings (e.g. protein function

prediction and other applications in the field of bioinformatics)

in which (a) there is a high degree of certainty about the input

space representation of each labelled point and its label, and (b)

the number of labelled points is low. In this situation, it is

indicated to avoid blunting, thus to preserve the effectiveness of

information sources. Second, edges directly connecting oppo-

sitely labelled points may propagate unhelpful information in

either direction. The smoothness condition in Equation (1) plays

the role of forcing both predicted scores to be similar to each

other and again both important points, the very sources of

information are blunted. Further, those edges unnecessarily

incur a conflict of the opposite flows in the area of a high

certainty in the system. Third, propagation of information

between unlabelled points is different—-while some edges of the

graph may be more helpful than others in solving the overall

problem, a priori we do not know which these might be.

Allowing the unlabelled points to harmonize with their

neighbours (thus implementing smoothness condition)

common to most such learning approaches) is a desirable

process.
Figure 2 illustrates the concept of graph sharpening.

Figure 2a shows an original graph of seven nodes (points)

and its (so far) symmetric weight matrix W. For simplicity, we

set the value of ‘1’ as a weight on every edge. Remember that, in

the interpretation of W, the row index denotes the destination

and the column index the source, and wij reads ‘the weight of

the edge from j to i ( j! i)’. In Figure 2b, the edges from

unlabelled to labelled points wij (denoted as dotted arrows)

are disconnected where i belongs to the set of labelled points

l :¼{1, 2, 3} and j to the set of unlabelled points u :¼{4, 5, 6, 7}.

Figure 2c presents the case of connection between oppositely

labelled points, w12 and w21. Therefore, both edges are further

removed from Figure 2b. Finally, we obtain a sharpened graph

in Figure 3. Note that the weight matrix becomes asymmetric,

and the edges between unlabelled points remain intact.

A detailed mathematical foundation of sharpening is given in

(Shin et al., 2006). Let us give a schematic flow of the proof.

We pose the general question: what if W is not considered

fixed? Is it possible to change some or all of the wij such that our

algorithm performs better? We begin by re-formulating the

objective function Equation (1) in terms of W, which is based

on the formulation of Belkin et al. (2004). Blockwise

consideration of the weight matrix,

W ¼
Wll Wlu

Wul Wuu

� �

allows us to state a condition which solutions W must satisfy if

the objective function is to be optimized—there are many such

solutions. Exploring every class of solutions is currently

regarded as intractable and is left as an open problem.

However, we can specify one simple ad hoc solution,

concordant with the intuition already stated. By setting Wll to

Fig. 2. Graph sharpening: (a) an original undirected (bi-directed) graph and its symmetric weight matrixW. Note that in the interpretation ofW, the

row index denotes the destination and the column index the source—so, e.g. wij should be read as ‘the weight of the edge from j to i (j! i )’. (b) Edges

from unlabelled to labelled points (denoted as dotted arrows) are disconnected. (c) Edges between oppositely labelled points are further removed.

Sharpening leaves the edges between unlabelled points intact.

Graph sharpening plus graph integration
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a non-negative diagonal matrix (including the null matrix) and
Wlu to 0 such as

Ws ¼
diagonal matrix 0

Wul Wuu

� �
ð3Þ

(see the final W in Fig. 2c), we obtain the output prediction for

unlabelled data points

f u ¼ �ðIþ �ðDuu �WuuÞÞ
�1Wul yl: ð4Þ

In spreading activation network terms, Equation (4) is

equivalent to information being propagated from labelled to
unlabelled data once (Wulyl) to set the initial condition for

subsequent spreading activation among u ! u, analogous to

Equation (2) but now excluding the labelled points. This also
has intuitive appeal. First, for labelled points, it assures

fl ¼ yl—there is no loss of information on labelled data points.

By disconnecting unnecessary and unhelpful edges, we allow
the labelled points and their outgoing edges to stay ‘sharp’ in

their influence on the rest of the graph. Second, for unlabelled

points, it preserves an important principle of SSL, namely
exploitation of the manifold structure inferred from unlabelled

data points, by keeping the edges, u ! u and l! u, of W.

4 GRAPH INTEGRATION

A protein graph model represents relationships between
proteins. Nodes depict proteins, and edges represent their

possible interactions or similarities; for instance, one can

extract an edge set (or similarity measurements) from amino

acid sequences, or from structures, or from interactions, etc.

Since there are many ways to represent a set of edges for a given

set of proteins there exist many graphs. And each graph is

regarded as partly independent from and partly complementary

to others. Frequently, it can be difficult to decide which graph

will perform best for function prediction for unlabelled

proteins. Individual graphs (from single data sources) are

often not sufficient for reliable prediction. One way to enhance

reliability may be to integrate the given multiple graphs.

Integrating multiple graphs stands for finding an optimum

value of the linear combination coefficient for the individual

graphs. In the semi-supervised learning framework, this

translates to finding the combination coefficients a for the

individual Laplacians, as shown in Figure 4. Recently, Tsuda

et al. (2005) proposed an integration method for multiple

graphs. One can see how the illustration in Figure 4 is related to

their formulation,

min
�

y>ðIþ
XK
k¼1

�kLkÞ
�1y

X
k

�k � �

ð5Þ

and its output prediction

f ¼ ðIþ
XK
k¼1

�kLkÞ
�1y ð6Þ

where K is the number of graphs and an Lk is the corresponding

graph Laplacian to graph Gk.

5 FUNCTION PREDICTION EXPERIMENTS

5.1 Data

In automated protein functional class classification, accurate

detection of functional relationships beyond close sequence

homology is desirable. Thus, we have restricted our selection to

protein chains from the PDBselect25 list (version October

2004), where any pair shares no more than 25% sequence

identity. Functional information was assigned in terms of the

Gene Ontology (GO) in the category ‘Molecular function’ and

mapped through the gene ontology annotation database (GOA

PDB 24.0). We chose the 20 highly populated GO categories as

in Hou et al. (2005). Of all PDBselect25 chains, 599 proteins

share at least one of these functional GO terms (Table 1).

Therefore, we took them as our experimental protein set.

Fig. 3. The sharpened graph: in contrast to the original in Figure 1, the

sharpened graph is no longer fully reciprocated and so the matrix of

edge weights W becomes asymmetric.

Fig. 4. Graph integration: every single graph Gk can solely be used for label prediction. However, since different graphs contain partly independent

and partly complementary pieces of information, integrating them into one may increase the reliability of predictions. In semi-supervised learning

framework, graph integration stands for finding an optimum value of the linear combination coefficient a for individual graph Laplacians Lk.
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To generate weighted edges between nodes (or proteins), we

used four different computational measures of molecular

similarity. Each measure assigned to every protein pair (i, j) a

positive weight (0�wij� 1) meaning the degree of molecular

similarity between chain i and j. The four different similarity

measures are Basic Local Alignment and Search Tool (BLAST,

Altschul et al., 1990), the standard approach to alignment of

primary sequence that resulted in a degree of sequence identity;

length-corrected Contact Metric (CM, Lisewski and Lichtarge,

2006), a metric-based similarity score by considering vector

representations of contacts from the entire tertiary structure;

Fast Alignment and Search Tool (FAST, Zhu and Weng, 2005),

an accurate and computationally efficient 3D geometrical

alignment algorithm calculating positive similarity scores;

Evolutionary Trace Annotation (ETA, Kristensen et al.,

2006), a method that measures similarity based on local

similarity of protein substructure, specifically 3D templates

that are small structural motifs of evolutionarily important

residues identified by the evolutionary trace method (Lichtarge

et al., 1996). Our choice represented all currently and

commonly used approaches to protein similarity measurement

(Watson et al., 2005): sequence alignment (BLAST), global 3D

alignment (FAST), local 3D alignment of small motifs (ETA),

and alignment-independent vector-based approaches (CM). An

edge-weight from BLAST/CM/FAST is a continuous value

while that of ETA is a binary value from a support vector

classifier, i.e. the edge-weight between two proteins is set to 1

(wij¼ 1) if they were predicted functionally related; no edge

(wij¼ 0) otherwise.

5.2 Results

Since a protein can belong to several GO categories, we posed

a binary-class classification problem for each GO term in

Table 1. The GO categories having only a few labelled proteins

(less than 10) were excluded; therefore, our experiment became

15 binary-class classification problems, determining member-

ship or non-membership of unannotated (unlabelled) proteins

for the respective GO terms. For each GO term, we calculated

the 5-fold cross-validation (5 CV) AUC (area under the curve)

of ROC (receiver operating characteristic) as a performance

measurement. The ROC curve plots true positive rate

(sensitivity) as a function of false positive rate (1-specificity)

Table 1. Twenty functional GO terms from the category ‘Molecular

function’

GO term Molecular function Number of

proteins

0003677 DNA binding 137

0005515 Protein binding 49

0016491 Oxidoreductase activity 39

0005524 ATP binding 95

0003723 RNA binding 50

0006118 Electron transport 87

0003676 Nucleic acid binding 63

0003824 Catalytic activity 57

0005198 Structural molecule activity 22

0005509 Calcium ion binding 32

0000287 Magnesium ion binding 3*

0008270 Zinc ion binding 56

0005489 Electron transporter activity 37

0004872 Receptor activity 7*

0016798 Hydrolase activity 0*

0004519 Endonuclease activity 9*

0004871 Signal transducer activity 18

0004672 Protein kinase activity 29

0004518 Nuclease activity 5*

0004867 Serine-type endopeptidase inhibitor activity 15

GO terms with less than 10 annotated proteins were excluded from our

classification experiment (asterisk mark in the last column).

Fig. 5. Positive effect of sharpening in pairwise AUC comparison for two competing methods in three different cases. More dots in upper diagonal

half indicate that the method in vertical axis outperforms the other assigned in the horizontal axis; P-values (from a sign test) represent the statistical

deviation from a random distribution of dots in the upper and lower half. (a) Sharpened versus. original: for 221 out of 300 (¼ 5 repetitions� 15

GO terms� 4 graphs) pairs in total, sharpening gave a higher AUC; (b) integrated (sharpened) versus individuals (sharpened): for 212 out of 300

(¼ 5� 15� 4) experiments, integration gave a higher AUC and (c) integration with sharpening (2007) versus without sharpening (2005): for 70 out of

75 (¼ 5� 15) experiments, integration with sharpening had a higher ROC score. More detailed results can be found in Appendix A from our

Supplementary Material.
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for all possible thresholds (as opposed to choosing a single
threshold (Gribskov and Robinson, 1996), see Figure 7. Hence,
it has become a standard qualifier for classification algorithms.

An AUC of 0.5 corresponds to random guessing, while an
AUC of 1.0 implies the algorithm successfully outputs a higher

predicted value for any positive example than that for any
negatives example (perfect classification).
We compared the proposed method integration on sharpened

graphs, with the four individual graphs obtained from BLAST,
FAST, CM and ETA, respectively, and also with the previous
method of Tsuda et al. (2005)—integration on original graphs.

In every comparison, we examined the performance change in
terms of original versus sharpened and individual versus

integrated. This setting enabled us to see the effect of the
proposed method from two separate viewpoints, sharpening
and integration. The value of smoothing parameter �—from

Equation (2) of original, Equation (4) of sharpening and
Equation (6) of integration—was obtained by 5CV searching

over �2 {0.1, 1, 5, 10, 50, 100}. For each of the available
settings per GO category, we compared the results at their best
parameters. A table with the best parameter is published at

the Internet address (http://mammoth.bcm.tmc.edu/biocomp
2007/). Remarkably, sharpening does not include any additional

parameters, nor integration—the linear combination coefficient
a in Equation (6) is automatically set as a solution of the
optimization.

5.2.1 Graph sharpening on individual graphs Figure 5a shows
the distribution of 300 (¼ 15 GO terms� 5 CVs� 4 graphs)
AUC pairs from the original (unsharpened) and sharpened

graphs. Most dots are scattered above the diagonal, thus
indicating better performance of the sharpened graphs against
originals. A sign test statistically rejected the null hypothesis,

‘the distribution would be evenly scattered below and above the
diagonal’, with significant confidence (p59� 10�16). Table 2

confirms this result: on average, sharpening increases the
original AUC by 0.03 (ETA) up to 0.12 (FAST).

5.2.2 Integrated graph versus individual graphs The next test
was whether individual prediction in sharpened graphs could

be further improved through their integration as stated in
Section 4. Figure 5b shows that this was the case: 222 of the 300

ROC AUC pairs are above the diagonal ( p59� 10�16). In
Figure 6, the average over 5CV AUCs are assigned to their
function classes. The figure assures that integration on

sharpened graphs achieves the highest AUCs when compared
with the individuals (sharpened)—except for GO 0003677

(DNA binding) and GO 0008270 (Zinc ion binding).
Integration effect on sharpened individual graphs show more
significance and less volatility than the effect of integration on

the original (unsharpened) networks (Table 2): 0.09 (� 0.04)
versus 0.02 (� 0.08) in average AUC increase by integration.

5.2.3 Proposed method versus previous method In the third

test, we verified how integration on sharpened graphs upgrades
the performance of the previous method (Tsuda et al., 2005),
integration alone, so to speak. The results show that sharpening

significantly contributes to AUC improvement, see Figure 5c;
70 out of 75 ROC pairs are in the upper diagonal

(p53� 10�18). Integration alone can be insignificant and T
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even worse (see, value 0.02� 0.08 in Table 2), particularly if

given graphs are noisy, which can often be the case in protein

similarity networks. But with sharpening, integration becomes

more effective, which is reflected by an AUC increase of

0.17� 0.08, see Table 2. Hence, given the performance of single

unsharpened (original) graphs, one can raise the AUC as much

as 0.17� 0.08 by applying integration with sharpening.

5.2.4 Computation time Sharpening does not require com-

putation. The computation time of an original graph, the time

for solving the sparse linear system in Equation (2), was nearly

trivial (less than 0.001 CPU second with MATLAB in a

standard 1500 MHz PC with 1 GB of memory). It became

faster for a sharpened graph since the Laplacian matrix gets

sparser. Integration in Equation (6) took avg. 24.27 (� 10.86)

CPU seconds for original, while it was avg. 4.66 (�4.44) for

sharpened weights, and graph sparsity through sharpening

benefitted the computation time for integration.

5.2.5 Enrichment Figure 7 shows a typical ROC curve of
the proposed method for GO 0003824 ‘Catalytic activity’. The

curve shows that sharpening and integration can reliably

discriminate enzymes (catalytic proteins) from non-enzymes

among proteins with 525% sequence similarity. The inner

figure shows the distribution of predicted values (scores), f, for

the unannotated proteins. An enrichment of enzymes toward

larger values is evident.

6 CONCLUSION AND DISCUSSION

We applied to the problem of protein function prediction two

recent developments in machine-learning methods based on

graph, sharpening (Shin et al., 2006) and integration (Tsuda

et al., 2005). Graph sharpening is a formal (details were omitted

for brevity) yet intuitive approach for disconnecting undesir-

able edges in a graph. The result yields sparser graphs that

contain less noise and, in turn, reduce computational expense

and improve prediction without need for additional param-

eters. Using an already established optimization framework,

graph integration can then be applied with greater efficiency

and effectiveness in order to pool information from multiple

sources. Both strategies, graph sharpening and graph integra-

tion, lend themselves well to the protein function prediction

problem. Graph sharpening offers a general framework to

address the noise that is pervasive among functionally relevant

measures of protein similarity, while graph integration allows

Fig. 6. AUC comparison (avg. of five cross-validation) between individual and the integrated graphs: bars within a group correspond to BLAST,

CM, FAST, ETA and the integrated graph in due order. For 13 out of 15 categories, integration with sharpening significantly surpasses individual

performance.
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Fig. 7. ROC curve on GO 0003824 (‘Catalytic activity’)—the curve

shows that graph sharpening and integration can reliably discriminate

enzymes (catalytic proteins) from non-enzymes. Insert: the distribution

of predicted values (scores), f, for the unlabelled nodes (unannotated

proteins)—empty bars stand for the distribution of non-enzymes,

whereas solid bars stand for that of enzymes. An enrichment of enzymes

toward larger values is evident.
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overall predictions to take into account a wide variety of

complementary types of information on protein similarity

graphs, each one representing a different aspect or type of

functional information. While either strategy can be applied

alone, with sharpening having a greater effect than integration,

the best result was reached when sharpening and integration are

used together and thus yield a synergestic effect on function

prediction performance at lesser computational cost. This

improvement is noteworthy for its size (0.17, or nearly 30%

average increase in the area under the ROC curve) and in view

of the diversity of similarity scores that were integrated:

BLAST is used over sequences, CM and FAST are applied

over whole structures and ETA is applied to a local structural

motif (and has only been optimized for enzymes, rather than

for the GO annotations used here).

This work motivates possible future studies. First, the

method is general and its full application for function

prediction will still require a continued refinement of individual

methods, as well as broadening the number of similarity

measures whose graphs are sharpened and then integrated

together. Towards this goal, we plan an internet accessible

software tool for sharpening and integration to allow

large scale function prediction using these methods. Second,

from a theoretical perspective, statistical formalization or

framework on how sharpening and integration work

together has not been conclusively established. This should be

studied further.
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