
Fast Pattern Selection for Support Vector
Classifiers

Hyunjung Shin and Sungzoon Cho

Department of Industrial Engineering, Seoul National University,
San 56-1, Shillim-Dong, Kwanak-Gu, 151-742, Seoul, Korea

{hjshin72, zoon}@snu.ac.kr

Abstract. Training SVM requires large memory and long cpu time
when the pattern set is large. To alleviate the computational burden in
SVM training, we propose a fast preprocessing algorithm which selects
only the patterns near the decision boundary. Preliminary simulation
results were promising: Up to two orders of magnitude, training time
reduction was achieved including the preprocessing, without any loss in
classification accuracies.

1 Introduction

One of the strongest points of Support Vector Machine (SVM) theory is the fact
that SVM quadratic programming (QP) problem is quite simple [14]. In SVM
QP formulation, the dimension of kernel matrix (M ×M) is equal to the number
of training patterns(M). Unfortunately, however, this innate characteristic yields
a difficulty when a large scale real-world problem is given. This enormous matrix
cannot easily fit into the memory of a standard computer. Moreover, training
cannot be finished in a reasonable time even if we manage to load the matrix on
the memory.

A standard QP solver has time complexity of order O(M3) [10]. Here, for the
sake of simplicity, we do not consider the dimension of input pattern. A small
training set can be solved with such standard QP solvers: MINOS, CPLEX,
LOQO and MATLAB QP routines. In order to attack the large scale SVM QP
problem, the decomposition methods or iterative methods have been suggested
which break down the large QP problem into a series of smaller QP problems.
They include the Chunking algorithm, Sequential Minimal Optimization (SMO)
algorithm, SVM Light algorithm and Successive Over Relaxation (SOR) algo-
rithm [5]. The general time complexity of those decomposition methods is ap-
proximately (the number of iterations)· O(Mq+q3): if q is the size of the working
set, each iteration costs O(Mq) to calculate q columns of the kernel matrix, about
O(q3) for solving the subproblem, and O(Mq) for finding the next working set
and updating the gradient. “The number of iterations” is supposed to increase
as the number of training patterns increases.

K.-Y. Whang, J. Jeon, K. Shim, J. Srivatava (Eds.): PAKDD 2003, LNAI 2637, pp. 376–387, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Fast Pattern Selection for Support Vector Classifiers 377

One way to circumvent this computational burden is to select only the train-
ing patterns, in advance, that are more likely to be support vectors. In a classifi-
cation problem, the support vectors are distributed near the decision boundary
and participate in the constitution of the margins thereabout. Therefore, select-
ing those patterns (potential support vectors) prior to SVM training is quite
desirable (see Fig. 1).

(a) (b)

Fig. 1. Pattern selection: a large training set shown in (a) is condensed to a small
training set (b) which is composed of only potential support vectors near the decision
boundary.

Up to now, there have been considerable researches about pattern selection
near the decision boundary for classification problem. Shin and Cho selected the
clean patterns near the decision boundary based on the bias and variance of out-
puts of a network ensemble [12]. Lyhyaoui et al. implemented RBF classifiers,
somewhat like SVMs, by selecting patterns near the decision boundary. They
proposed 1-nearest neighbor method in opposite class after class-wise cluster-
ing [7]. To lessen the burden of the MLP training, Choi and Rockett used kNN
classifier to estimate the posterior probabilities for pattern selection. But one
major drawback is that it takes approximately O(M2) to estimate the poste-
rior probabilities [3]. A pattern selection approach, more focused on SVMs, was
proposed by Almeida et al. They conducted k-means clustering on the entire
training set. All patterns were selected for heterogeneous clusters in their class
membership, while only centroids were selected for homogeneous clusters [1].

Recently, we proposed to select the patterns near the decision boundary based
on the neighborhood properties [11]. We utilized k nearest neighbors to look
around the pattern’s periphery. The first idea stems from the fact that a pattern
located near the decision boundary tends to have more heterogeneous neighbors
with respect to their class membership. The degree of proximity to the decision
boundary is estimated by Neighbors Entropy. A larger Neighbors Entropy value
indicates that the pattern is close to the decision boundary. The second idea
arises from the fact that a pattern on the right side of the decision boundary
tends to belong to the same class as its neighbors. Among the patterns with

378 H. Shin and S. Cho

positive Neighbors Entropy value, potential noisy patterns are eliminated by
the ratio of the neighbors whose label matches that of the pattern. A smaller
ratio indicates that the pattern is potentially incorrectly labeled. The approach
reduced the number of patterns significantly, thus reduced the training time.
However, the pattern selection process evaluating the kNNs for all patterns, was
time consuming. A naive algorithm took O(M2), so the pattern selection process
became a near bottleneck.

In this paper, we propose a fast version of the algorithm. Here, we just
compute the kNNs of the patterns near the decision boundary, not all training
patterns. The idea comes from another simple neighborhood property that the
neighbors of the pattern located near the decision boundary tend to be located
near the decision boundary as well. The time complexity of the fast algorithm
is O(bM), where b is the number of patterns in the “overlapped” region around
decision boundary.

Now, we briefly summarize the contents of the paper. In section 2, we present
our basic idea of selecting the patterns near the decision boundary. In section 3,
we propose the fast algorithm. In section 4, we show the experimental results,
involving two synthetic problems and one real world problem. In the last section,
we conclude the paper with the discussion of the limitations.

2 Selection Criteria Based on Neighborhood Properties

The first neighborhood property is that a pattern located near the decision
boundary tends to have heterogeneous neighbors with respect to their class la-
bels. Thus, the degree of pattern x’s proximity to the decision boundary can be
estimated by “Neighbors Entropy(x)”, which is defined as the entropy of pattern
x’s k-nearest neighbors’ class labels (see Fig. 2). A pattern with a positive Neigh-
bors Entropy(x) value is assumed to be located near the decision boundary. Note
that the measure considers the pattern’s neighbors only, not the pattern itself.

The second neighborhood property is that a pattern on the right side of
the decision boundary tends to belong to the same class as its neighbors. If a
pattern’s own label does not match the majority label of its neighbors’, it is
likely to be incorrectly labeled. The measure “Neighbors Match(x)” is defined
as the ratio of x’s neighbors whose label matches that of x. Only those pattern
xs are selected whose Neighbors Match(x) > β · 1

J (J is the number of classes
and 0 < β ≤ 1). In other words, potential noisy patterns are eliminated. The
parameter β controls the selectivity. We have empirically found a value of 0.5.
Based on those neighborhood properties we propose following selection criteria.

[Selecting Criteria] Neighbors Entropy(x) > 0 and Neighbors Match(x) > β · 1
J
.

3 Fast Implementation of the Proposed Method

A naive algorithm was represented in [11] where the kNNs of all patterns were
evaluated. This algorithm is easy to implement and also performs well as long
as the size of training set, M , is relatively small.

Fast Pattern Selection for Support Vector Classifiers 379

LabelProbability(x) {
/* For x, calculate the label probabilities of kNN(x) over J classes,
{C1, C2, . . . , CJ}, where kNN(x) is defined as the set of
k nearest neighbors of x. */

kj = |{x′ ∈ Cj |x′ ∈ kNN(x)}|, j = 1, . . . , J .

return
(
Pj = kj

k
, ∀j

)
.

}
Neighbors Entropy(x) {

/* Calculate the neighbors-entropy of x with its nearest neighbors’ labels.
In all calculations, 0 logJ

1
0 is defined to be 0. */

Do LabelProbability(x).

return
(∑J

j=1 Pj · logJ
1

Pj

)
.

}
Neighbors Match(x) {

/* Calculate the neighbors-match of x. j∗ is defined as the label of x itself.*/

j∗ = arg
j

{Cj | x ∈ Cj , j = 1, . . . , J}.
Do LabelProbability(x).
return (Pj∗).
}

Fig. 2. Neighbors Entropy and Neighbors Match functions

However, when the size of training set is large, the computational cost in-
creases in proportion to the size. Let’s assume that the distance between any two
points in d-dimensional space can be computed in O(d). Then to find the nearest
neighbors for each pattern takes sum of “distance computation time (DT)” and
“search time (ST)”. The total time complexity of the naive algorithm, therefore,
is O (M · (DT + ST)). Roughly speaking, it is O(M2).

DT : Distance Computation Time O (d · (M − 1))

ST : Search(query) Time min{O ((M − 1) · log(M − 1)) , O (k · (M − 1))}
Total Time Complexity O (M · (DT + ST)) ≈ O(M2)

There is a considerable literature on nearest neighbor searching for the case of
the huge data size and the high dimensional. Most approaches focus on reducing
DT or ST. See [4] and [13] for reducing DT, and [2] and [8] for reducing ST.

Our approach, on the other hand, focuses on reducing M of
O (M · (DT + ST)). The idea comes from yet neighborhood property that the
neighbors of the pattern located near the decision boundary tend to be the pat-
terns near the decision boundary themselves. We start with a set of randomly

380 H. Shin and S. Cho

selected patterns. Once we find some of the patterns near the decision boundary,
we examine the its neighbors. This successive evaluation of the neighbors of a
current set of patterns will stop when all the patterns near the decision bound-
ary are chosen and evaluated. By following [Spanning Criteria], it is determined
whether the next evaluation will be spanned to the pattern’s neighbors or not.
This “selective kNN spanning” procedures is shown in Fig. 3.

[Spanning Criteria] Neighbors Entropy(x) > 0

4 Experiments

The proposed algorithm was tested on two artificial binary-class problems and
one well-known real world problem. All simulations were carried on a Pentium
800 MHz PC with 256 MB memory.

4.1 Synthetic Problems

The two problems were devised for the performance proof according to the dif-
ferent decision boundary characteristics. We used Gunn’s SVM Matlab Tool-
box [15].

Continuous XOR Problem with Four Gaussian Densities: The first
problem is a continuous XOR problem. From the four Gaussian densities, a
total of 600 training patterns were generated. There are about 10% patterns in
the overlapped region between the densities. The characteristic of this problem
is that the density of patterns gets sparser when it goes closer to the decision
boundary.

C1 =
{

x | x ∈ C1A ∪ C1B ,

[
−3
−3

]
≤ x ≤

[
3
3

]}
,

C2 =
{

x | x ∈ C2A ∪ C2B ,

[
−3
−3

]
≤ x ≤

[
3
3

]}

where C1A, C1B , C2A and C2B were

C1A =
{

x | N
([

1
1

]
,

[
0.52 0
0 0.52

])}
, C1B =

{
x | N

([
−1
−1

]
,

[
0.52 0
0 0.52

])}
,

C2A =
{

x | N
([
−1

1

]
,

[
0.52 0
0 0.52

])}
, C2B =

{
x | N

([
1
−1

]
,

[
0.52 0
0 0.52

])}
.

Fast Pattern Selection for Support Vector Classifiers 381

D The original training set.
Di

e The set to be evaluated (spanned or non-spanned) at i th step.
Di

o The set of the patterns to be spanned at i th step from Di
e.

Each element will find its k nearest neighbors to constitute
the next evaluation set, Di+1

e .
Di

x The set of the patterns not to be spanned at i th step from Di
e.

Di
s The set of the selected patterns at i th step from Di

o.
Si

o The accumulated set of the spanned patterns after subsequent
evaluations till (i-1) th step.

Si
x The accumulated set of the non-spanned patterns after subsequent

evaluations till (i-1) th step.
SSi The accumulated set of the selected patterns till (i-1) th step,

the final set will be returned as a aimed set.
kNN(x) The set of k-nearest neighbors of x, whose cardinality is k.

SelectiveKnnSpanning() {

[0] Initialize D0
e with randomly chosen patterns from D.

K and J are global constant variables, and P1, · · · , PJ are global variables.
i ← 0, S0

o ← ∅, S0
x ← ∅, SS0 ← ∅.

while Di
e �= ∅ do

[1] Calculate Neighbors Entropy(x) and Neighbors Match(x) of x ∈Di
e.

[2] Choose x satisfying [Spanning Criteria].
Di

o ← {x | Neighbors Entropy (x) > 0, x ∈ Di
e}.

Di
x ← Di

e −Di
o.

[3] Select x satisfying [Selecting Criteria].
Di

s ← {x | Neighbors Match (x) > β · 1
J
, x ∈ Di

o}.

[4] Update the pattern sets: the spanned, the non-spanned and the selected.
Si+1

o ← Si
o ∪Di

o , Si+1
x ← Si

x ∪Di
x , SSi+1 ← SSi ∪Di

s.

[5] Constitute the next evaluation set Di+1
e .

Di+1
e ← ⋃

x∈Di
o

kNN(x)− (Si+1
o ∪ Si+1

x).

[6] i← i + 1.
end
return SSi

}

Fig. 3. Selective kNN spanning algorithm

382 H. Shin and S. Cho

Sine Function Problem: In the second problem, the input patterns were
generated from a two-dimensional uniform distribution, and then the class labels
were determined by whether the input is located above or below a sine decision
function. To make the density near the decision boundary thicker, four different
Gaussian noises were added along the decision boundary, i.e., N(µ, s2) where
µ is an arbitrary point on the decision boundary and s is a Gaussian width
parameter(0.1, 0.3, 0.8, 1.0). Among 500 training patterns, 20% are located in
the overlapped region. Therefore, the characteristic of this problem is that the
density of patterns increases near the decision boundary.

C1 =
{

x | x2 > sin (3x1 + 0.8)2 ,

[
0

−2.5

]
≤

[
x1

x2

]
≤

[
1

2.5

]}
,

C2 =
{

x | x2 ≤ sin (3x1 + 0.8)2 ,

[
0

−2.5

]
≤

[
x1

x2

]
≤

[
1

2.5

]}
.

Fig. 4(a) and Fig. 4(b) shows the selected patterns against the original ones after
normalization ranging from -1 to 1. The value of k was set as 5.

(a) (b)
Fig. 4. The selected patterns against the original ones: (a) Continuous XOR Problem
and (b) Sine Function Problem. The selected patterns, shown as outlined circles or
squares, are scattered against the original ones.

Only 180(30%) and 264 (52.8%) of the original patterns were selected, re-
spectively. The number of the selected patterns by fast algorithm was identical
to that by the naive algorithm. The reduction ratio in Sine Function Problem
is rather smaller when it is compared with that of Continuous XOR problem.
That is due to the difference in densities near the decision boundary.

A total of 300 test patterns were generated from the statistically identical
distribution as its training set for both problems. We built 50 SVMs with all
patterns and 50 SVMs with the selected patterns according to every combination
of hyper-parameters. Five RBF kernels with different width parameters(σ=0.25,
0.5, 1, 2, 3) and five polynomial kernels with different degree parameters(p=1,
2, 3, 4, 5) were adopted. As for the tolerance parameter, five levels (C= 0.1,

Fast Pattern Selection for Support Vector Classifiers 383

1,10, 100, 1000) were used. This optimal parameter searching is laborious and
time-consuming if individual training takes a long time.

SVM performances “with all patterns” (A) and “with the selected patterns”
(S) were compared in terms of the test error rate, the execution time, and the
number of support vectors. Fig. 5 shows SVM test error rates in all parameter
combinations we adopted. In each cell, upper number indicates test error rate for
A and lower for S. Gray cell means that S performed better than or equal to A,
while white cell means that A performed better. An interesting fact is that SVM
performance with S is more sensitive to parameter variation. This phenomenon
is shown substantially with ill-posed parameter combination (white cells). For
the parameters where SVM with A performs well, SVM with S also works well.

(a) (b)
Fig. 5. Test error comparison for SVM experimental results: (a) Continuous XOR
Problem and (b) Sine Function Problem. In each cell, upper number indicates test
error rate for A and lower for S.

Table 1 compares the best performance of each SVM, A and S. The cor-
responding parameter combination is marked ‘*’ in Fig. 5. The SVM with the
selected patterns was trained much faster thanks to fewer training patterns. Less
important support vectors were eliminated in building the margins. Employing
fewer SVs results in a smaller recall time. All this happened while the general-
ization ability was not degraded at al.

Table 1. Best Result Comparison

Continuous XOR Problem Sine Function Problem

A(All) S(Selected) A(All) S(Selected)

Execution Time (sec.) 454.83 3.85 267.76 8.79
Margin 0.0612 0.0442 0.1904 0.0874
No. of Training Patterns 600 180 500 264
No. of Support Vectors 167 84 250 136
Training Error(%) 10.50 13.89 19.00 19.32
Test Error(%) 9.67 9.67 13.33 13.33

Table 2 shows the execution time from Fig. 5. The average SVM training
time of A was 472.20(sec) for Continuous XOR problem and 263.84(sec) for Sine

384 H. Shin and S. Cho

Function Problem. It is quite comparable 4.45(sec) and 9.13(sec) of S. Pattern
selection time of S took 0.88(sec) and 0.66(sec) by the naive algorithm. The
proposed fast algorithm reduced the selection time to 0.21(sec) and 0.17(sec),
respectively. Therefore, by conducting pattern selection procedure just once, we
could shrink SVM training time by one or two orders of magnitude.

Table 2. Execution Time Comparison

No. of No. of Pattern Selection SVM Avg.

patterns SVs(avg.) CPU time CPU time

Continuous A (All) 600 292.20 - 472.20
XOR S (Selected) 180 120.72 0.88 (Naive) 4.45

0.21 (Fast)

Sine A (All) 500 293.60 - 263.84
Function S (Selected) 264 181.76 0.66 (Naive) 9.13

0.17 (Fast)

Fig. 6 shows the decision boundaries and margins of the SVMs both with all
patterns and with the selected patterns of Continuous XOR problem. (Because
of page limitation, we omit the figures for Sine Function problem.) Decision
boundary is depicted as a solid line and the margins are defined by the dotted
lines in both sides of it. Support vectors are outlined. Note that in the aspects of
generalization performance, the decision boundaries are all but similar in both
plots.

(a) (b)

Fig. 6. Patterns and decision boundaries between (a) SVM with all patterns and (b)
SVM with the selected patterns for continuous XOR Problem.

Fast Pattern Selection for Support Vector Classifiers 385

4.2 Real Problem: MNIST Dataset

For real world data benchmarking test, we used MNIST dataset of handwritten
digits from [15]. It consists of 60,000 patterns for training and 10,000 patterns for
testing. All binary images are size-normalized and coded by gray-valued 28x28
pixels in the range between -1 and 1, therefore input dimension is 784.

Nine binary classifiers of MNIST were trained: class 8 is paired with each of
the rest. We used OSU SVM Classifier Matlab Toolbox since the kernel matrix
was too large for the standard QP rountine to fit into memory [15]. A Fifth-
order polynomial kernel (p=5), C value of 10, and KKT(Karush-Kuhn-Tucker)
tolerance of 0.02 were used same as in [10], and the value of K was set to 50.

The results for the training runs both with all patterns and with the selected
patterns are shown in Table 3. First, we compare the results with regard to the
number of training patterns and also the number of support vectors. The pattern
selection chose an average 16.75% of patterns from the original training sets.

Table 3. MNIST Result Comparison

Paired Classes

0-8 1-8 2-8 3-8 4-8 5-8 6-8 7-8 9-8

A(All Patterns)

No. Of Patterns 11774 12593 11809 11982 11693 11272 11769 12116 11800

No. Of SVs 538 455 988 1253 576 1039 594 578 823

SVM Exe. Time 201.74 190.76 368.82 477.25 212.18 379.59 222.84 222.40 308.73

Test Error(%) 0.51 0.09 0.34 0.50 0.10 0.16 0.31 0.10 0.41

S(Selected Patterns)

No. Of Patterns 1006 812 2589 4089 1138 3959 1135 999 1997

No. Of SVs 364 253 828 1024 383 882 421 398 631

SVM Exe. Time 11.11 5.92 33.03 49.84 12.11 49.74 14.69 13.55 26.61

Pattern Sel. Time 46.11 43.33 78.81 97.89 48.13 93.42 44.27 40.14 59.62

Test Error(%) 0.41 0.95 0.34 0.45 0.15 0.21 0.31 0.18 0.43

When all patterns were used, only 6.44% of the training patterns were used as
support vectors. With selected patterns, 32.09% of its training patterns were
support vectors. In terms of utilization, the pattern selection did a good job (see
Fig. 7(a)).

Second, SVM execution time was significantly reduced from 287.15(sec) to
24.07(sec) on average after the pattern selection procedure. Including the pattern
selection time, the total time was, on average, 85.37(sec). Consider that the SVM
training is performed several times to find the optimal parameters. On the other
hand, the pattern selection procedure is performed only once (see Fig. 7(b)).

Now we finally compare the SVM test error rates between A (with all pat-
terns) and S (with the selected patterns). First, average test error rate over nine
classifiers were 0.28% for the former and 0.38% for the latter. But note that most
SVM classifiers of S performed all but same as the ones of A except 1-8 classi-
fier. This exception is mainly due to the unique characteristic of digit ‘1’ images.
Individual pattern belongs to ‘1’ class is a sparse vector. Only a few fields of a

386 H. Shin and S. Cho

(a) (b)

Fig. 7. MNIST Result Comparison: (a) The portion of support vectors in training set,
and (b) SVM execution time.

vector have significant gray-scaled value, and the rest of the fields have value of
‘0’. Hence, it might affect the finding the nearest neighbors in opposite class(8
class) during the pattern selection procedure. This conjecture is accompanied by
the number of selected patterns of ‘1’ digit class. Only 95 patterns were selected
from 6742 patterns in ‘1’ digit class. In the meantime, average test error rate for
the rest was 0.30% for A and 0.31% for S.

5 Conclusion

To alleviate the computational burden in SVM training, we proposed a fast
pattern selection algorithm which selects the patterns near the decision boundary
based on the neighborhood properties. Through several simulations, we obtained
promising results: SVM with the selected patterns was trained much faster with
fewer redundant support vectors, without any loss in test performance.
The time complexity analysis of the proposed algorithm will be carried out in
the near future.

Related to the proposed algorithm, we would like to address two limitations
here. First, it is not easy to find the right value for β in [Selecting Criteria]. β
controls the selectivity by kNN classifier. In small dimensional space, β can be
set to a large value(i.e. β = 1), since kNN classifier performs well. But in large
dimensional space, a large value of β is somewhat risky. Because kNN classifier’s
accuracy is degraded. Empirically, up to about 20 dimensional space, β = 1 was
not problematic. This coincides with the recommendation in [9].

Second, the proposed algorithm works efficiently under the following circum-
stances: when the classes are overlapped and when the pattern is stored as a
non-sparse vector. Neither condition is met for ‘1’ digit class of MNIST data set.
It is known as a linearly separable class from all other digit classes. It is also the
most sparse matrix among 10 digit classes [6] [10].

Fast Pattern Selection for Support Vector Classifiers 387

References

[1] Almeida, M.B., Braga, A. and Braga J.P.(2000). SVM-KM: speeding SVMs learn-
ing with a priori cluster selection and k-means, Proc. of the 6th Brazilian Sym-
posium on Neural Networks, pp. 162–167.

[2] Arya, S., Mount, D.M., Netanyahu, N.S. and Silverman, R., (1998). An Optimal
Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions,
Journal of the ACM, vol. 45, no. 6, pp. 891–923.

[3] Choi, S.H. and Rockett, P., (2002). The Training of Neural Classifiers with Con-
densed Dataset, IEEE Transactions on Systems, Man, and Cybernetics – PART
B: Cybernetics, vol. 32, no. 2, pp.202–207.

[4] Grother, P.J.,Candela, G.T. and Blue, J.L, (1997). Fast Implementations of Near-
est Neighbor Classifiers, Pattern Recognition, vol. 30, no. 3, pp. 459–465.

[5] Hearst, M.A., Scholkopf, B., Dumais, S., Osuna, E., and Platt, J., (1998). Trends
and Controversies - Support Vector Machines, IEEE Intelligent Systems, vol. 13,
pp. 18–28.

[6] Liu C.L., and Nakagawa M., (2001). Evaluation of Prototype Learning Algorithms
for Nearest-Neighbor Classifier in Application to Handwritten Character Recog-
nition, Pattern Recognition, vol.34, pp. 601–615.

[7] Lyhyaoui, A., Martinez, M., Mora, I., Vazquez, M., Sancho, J. and Figueiras-
Vaidal, A.R., (1999). Sample Selection Via Clustering to Construct Support
Vector-Like Classifiers, IEEE Transactions on Neural Networks, vol. 10, no. 6,
pp. 1474–1481.

[8] Masuyama, N., Kudo, M., Toyama, J. and Shimbo, M., (1999). Termination Con-
ditions for a Fast k-Nearest Neighbor Method, Proc. of 3rd International Confer-
ence on Knoweldge-Based Intelligent Information Engineering Systems, Adelaide,
Australia, pp. 443–446.

[9] Mitchell, T.M., (1997). Machine Learning, McGraw Hill, See also Lecture Slides
on Chapter8 for the Book at http://www-2.cs.cmu.edu/ tom/mlbook-chapter-
slides.html.

[10] Platt, J.C. (1999). Fast Training of Support Vector Machines Using Sequential
Minimal Optimization, Advances in Kernel Methods: Support Vector Machines,
MIT press, Cambridge, MA, pp. 185–208.

[11] Shin, H.J. and Cho, S.Z., (2002). Pattern Selection For Support Vector Classifiers,
Proc. of the 3rd International Conference on Intelligent Data Engineering and
Automated Learning (IDEAL), Manchester, UK, pp. 469–474.

[12] Shin, H.J. and Cho, S.Z., (2002). Pattern Selection Using the Bias and Variance of
Ensemble, Journal of the Korean Institute of Industrial Engineers, vol. 28, no. 1,
pp. 112–127, 2002.

[13] Short, R., and Fukunaga, (1981). The Optimal Distance Measure for Nearest
Neighbor Classification, IEEE Transactions on Information and Theory, vol. IT–
27, no. 5, pp. 622–627.

[14] Vapnik, V., (2000). The Nature of Statistical Learning Theory, Springer-Verlag
New York, Inc. 2nd eds.

[15] http://www.kernel-machines.org/

	Introduction
	Selection Criteria Based on Neighborhood Properties
	Fast Implementation of the Proposed Method
	Experiments
	Synthetic Problems
	Real Problem: MNIST Dataset

	Conclusion

