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Abstract

ssifiers:

Trainmg SVM requires large memory and long cpu time when the
pattern set 1s large. To alleviate the computational burden n oVM
training, we propose a tast preprocessing algorithm which selects only
the patterns near the decision boundary. The time complexity of the

proposed algorithm 1s much smaller than that of the naive M -

algorithm.

1. Introduction

In SVM QP formulation, the dimension of kernel matrix ( Mx M) 1s equal to the number of training

patterns ( M). A standard QP solver has time complexity of order O(M?): MINOS, CPLEX, LOQO and
MATLAB QP routines. In order to attack the large scale SVM QP problem, the decomposition methods

or iterative methods have been suggested which break down the large QP problem into a series of
smaller QP problems: Chunking, SMO, SVM™™ and SOR [5][8]. The general time complexity of those

methods is approximately (the number of iterations) + O(Mg+g°’) where ¢ is the size of the working

set. Of course, "the number of iterations” 1s supposed to increase as M Increases.

One way to circumvent this computational burden 1s to select only the training patterns, in advance,
that are more likely to be support vectors. In a classification problem, the support vectors are distributed
near the decision boundary. Therefore, selecting those patterns (potential support vectors) prior to SVM

training is quite desirable (see Fig. 1).

boundary. Shin and Cho selected the clean patterns near the decision boundary

Up to now, there have been considerable researches about pattern selection near the decision

based on the hi

as and

variance of outputs of a network ensemble [10]. Lyhyaoui et al. implemented R classifiers, somewhat like

SVMs, by selecting patterns near the decision boundary. They proposed [-nearest neighbor method 1n
opposite class after class—-wise clustering [6]. To lessen the burden of the MLP training, Choi and
Rockett used ANN classifier to estimate the posterior probabilities for pattern selection. But one major




drawback is that it takes approximately O(M?*) to estimate the posterior probabilities [3]. Yet another
pattern selection approach, focusing mostly on SVMs, was proposed by Almeida et al [1]. They
conducted k-means clustering on the entire training set. All patterns were selected for heterogeneous
clusters, while only centroids were selected for homogeneous clusters.

Class 1 © ©

. SN O
Decision Boundary Class 2

Class 1

LLLLL

Selected Patterns

Class 2

(a)

(b)

Fig. 1. Pattern selection: a large training set shown in (a) is condensed to a small training set (b) which is

composed of only potential support vectors.

Recently, we proposed to select the patterns near the decision boundary based on the neighborhood
properties [9]. We utilized k nearest neighbors to look around the pattern’s periphery. The first property
dictates that a pattern located near the decision boundary tends to have more heterogeneous neighbors.
The degree of proximity to the decision boundary can be estimated by neighbors’ label entropy. A larger
to the decision boundary. The second property dictates
that a pattern on the correct side of the decision boundary tends to belong to the same class as its

entropy value indicates that the pattern 1s close

neighbors. The ratio of the neighbors whose label matches that of the pat

ern can be used as an

estimate on how noisy the pattern i1s. In other words, the smaller the ratio value, the more likely the

pattern 1S noisy. Thus, among the patterns wr

th a positive entropy value, potential noisy -

identified and then eliminated. The approach rec

patterns are

uced the number of patterns significantly, t

s reduced

the training time. However, a naive algorithm evaluating kNNs for all patterns took OQ(M?), so the
pattern selection process itself was time consuming.

In this paper, we propose a fast algorithm. Here, we just compute the kKNNs of the -

decision boundary, not all tramning patterns. The

This paper 1s structured as follows. In section 2, we propose the fast algorithm which

patterns near the decision boundary. In section 3, we provide the time complexity analysis of the

algorithm. In section 4, we present the empirical

results confirming the time complexity of ou

In the last section, we conclude the paper with the discussion of the limitations.

hatterns near the
idea comes from another neighborhood property that the
neighbors of the pattern located near the decision boundary tend to be located near the ¢

as well. The time complexity of the fast algorithm is approximately O(dM), w
patterns in the "overlap” region around decision boundary. In most practical prob.

ecision boundary
nere b 1s the number of

ems, b M holds.

selects the

r algorithm.



2. Fast Algorithm based on Neighborhood Properties

The first neighborhood property 1s that a pattern located near the decision boundary tends to have

heterogeneous neighbors. Thus, the degree of pattern x's proximity to the decision boundary can be

estimated by "Neighbor Entropy (
neighbors’ class labels (see Fig. 2).

7(:)”, which 1s defined as the entropy of pattern x's k-nearest

—>

A pattern with a positive Neighbor_Entropy( x) value is assumed to

be located near the decision boundary. Note that the measure considers the pattern’s neighbors only, not

the pattern 1tself.

The second neighborhood property 1s that a pattern on the correct side of the decision boundary tends
to belong to the same class as 1ts neighbors. If a pattern’s own label 1s very different from those of its

neighbors, it is likely to be incorrectly labeled. The measure '‘Neighbor Match( x)'" is defined as the

ratio of x's neighbors whose label

matches that of «. Only those pattern xs are selected that satisty

Neighbor Match( x) > B- 1/J (J is the number of classes and 0<A<1). In other words, potential

noisy patterns are elimmated. The

parameter A controls the selectivity. We have empirically found a

value of 0.b. Based on those neighborhood properties we propose the following selecting criteria.

[Selecting Criterial Neighbor Entropy( ) > 0 and Neighbor Match( x) > 8- 1/J

LabelProbability( x) {

return (R—— %,Vj).

Neighbor_Entropy( x) {

Do LabelProbability( x).
J

return (21 P;- log; |
.? —

Neighbor Match( ) {

Do LabelProbability( x).

return (P ..).

/* For x, calculate the label probabilities of KNN( x) over ] classes, C G, . C,

where KNN( x) is defined as the set of k nearest neighbors of x. */
E=|l x eC;| x e kNN, =1,/

/% Calculate the neighbors—entropy of “x with its nearest neighbors’ labels, In all

calculations, (log f% 1s defined to be 0. */

P

/% Calculate the neighbors—-match of x. 7 is defined as the label of x itself. */
ff=arg (ClxeC, j=1,-

)

I* &

w5

Fig. 2. Neighbor_Entropy and Neighbor_Match functions

A naive algorithm was presented in 9] where the AKNNs of all patterns were evaluated. This
algorithm 1s easy to mmplement and also runs 1n a reasonable amount of time as long as the size of

training set, M, 1s relatively small.

However, when the size of training set 1s large, the computational



cost Increases In proportion to the size. Let us assume that the distance between any two pomnts m
-dimensional space can be computed in O(d). Then finding the nearest neighbors for each pattern takes
sum of distance computation time ("DT”) and search time ("ST") (see table 1). The total time complexity

of the naive algorithm, therefore, is (M- (DT+ ST)). Roughly speaking, it is O(M?).
Table 1. DT and ST
DT : Distance Computation Time O(d- (M—1) )
ST : Search(query) Time min{ O((M—1) - loe(M—1)), OCk-(M—1))}
Total Time Complexity O(M- (DT+ST)) =~ O(M?)

There 1s a considerable amount of literature on efficient nearest neighbor
large data sets of a high dimension. Most approaches focus on reducing DT or

searching algorithms for
ST. See [4] and [11] for

reducing DT, and [2] and [7] for reducing ST. Our approach, on the other hand, focuses on reducing the
first M of O(M- M). The idea comes from yvet another neighborhood property that the neighbors of a

pattern located near the decision boundary tend to be located near the decision

a set of randomly selected patterns, we examine the patterns near the deci

boundary as well. GGiven
sion boundary and therr

neighbors only. This successive "neighbors” only evaluation of the "current” pa

tern set 1s repeated until

all the patterns near the decision boundary are chosen and evaluated. A pattern 1s "expanded” or a

pattern’s neighbors are evaluated when 1ts Neighbor Entropy i1s positive. This ”
procedure 1s shown 1n Fig. 3 using notations displayved in table 2.

| Expanding Criterial Neighbor Entropy( x) >0

Table 2. Notation

selective kNN expanding”

reduced training pattern set

—>

ENN (x) the set of k nearest neighbors of %

Neighbor_Entropy () >0
BT the set of k nearest neighbors of patterns belonging to B

Symbol Meaning
D the original training set whose cardmality 1s M
D/ the evaluation set at i-th step
D a subset of D', the set of patterns to be "expanded” from D', each element of
0 which will compute 1ts k nearest neighbors to constitute the next evaluation set,
D 1+1
iy a subset of D;, the set of patterns "not to be expanded” {from D;,
X D;‘: D;_ D;
D:* the set of “selected” patterns from D; at 1-th step
. 7 —1 -
) the accumulated set of expanded patterns, 'Uo D’
=
. 7 —1 :
S, the accumulated set of non-expanded patterns, *Uo D,
~
. 1— 1 :
SS’ the accumulated set of selected patterns, 'Uo D/, the last of which SSYis the
~

B the set of patterns located 1n  the “overlapped” region characterized by




Selective-kNN-Expanding( ) {

[0] Initialize D;* with randomly chosen patterns from D.
Constants k and J are given. Initialize : and various sets as follows:

i—0, S'—o, S «o, SS—0.

while D,+¢ do
1] Choose « satisfying [Expanding Criteria]
D;‘*’r{;\ Neighbor_Entropy(?c»O, xe D;‘}.

[2] Select « satisfying [Selecting Criteria]
D, <{ x| Neighbor _ Match(x) > g/J, xe D,’}

[3] Update the pattern sets: the expanded, the non-expanded, and the selected.
S E“I‘IF S;U Dﬂﬂ’, S E’-I-lﬂP S;’U D;’! SS f-l—l{_ SSEU D:.

0 X

[4] Compute the next evaluation set D," ™

D'Eg'-l-lﬂH _}U klw(;_)_( Sﬂﬂ'-l-lU Sxﬂ'-l-l)'

i
xe D,

[0] <—i+1.

end

return SS’
}

Fig. 3. selective-kNN-Expanding algorithm

3. The Time Complexity Analysis of the Fast Algorithm

In this section, we show that the proposed algorithm terminates within a finite number of steps
and that its time complexity 1s significantly smaller than that of the
naive algorithm.

Lemma 1. Different evaluation sets are disjoint:
D,/ D =0, Vi#j.

proof. Consider step [4] of the algorithm shown in Fig. 3,
D;:( U lleNN(ﬁ)—( S, US.").

xe D,

Since S; and S; are defined as ( | Dﬂj ) and ( | D; ) respectively, thelr union results in




s, Us.’=U( p'Un)=(Un.) 3)

7=0

By replacing ( S,’U S,’) in Eq.(2) with Eq.(3), we get
7 21— 1 j
/= U wnNGS)-( U p,) )

xe D,

Eq.(4) clearly shows that DEE‘ does not share patterns with any of its earlier sets D;;, 7=0,--,2—1. 9

Lemma 2. The union of all D,"'s is equivalent to the set of kNN's of the union of all D,"'s.

( U1 D, ) =( - o DﬂﬂlkMV(;))- (5)
proof. From Eq.(4) in Lemma (1), we get |
O 0= (U mwG)- (U p.) 6
Since In general
(U kNN())U( U ENN(D)=( o kNN () (7)
holds, we get
no R n=1
Und)=( . e) () ®
Eq.(8) can be rewritten in the form of
" . . Y
( z‘L:Jl DEE) - ( xe D) DEJU“*U DHHIM(X))Q( z‘Uol De ) ' ()
If we union ( :Gﬂl D, Eﬁ) to both sides of Eq.(9), then
0,001, oo i) 2

: > n—] ;
results. Since D, U lkMV(x), =1, -, n, (_Ul D, ), the last #»—1 components of the second

xe D5

factor of the right hand side may vanish. Then, we [mally have

(Ql DEE.)U DEO:( e DU -

kMV(?é))U D', (11)
D, J-U D,

If we consider only the relationship after the first iteration, then { D_{ e}™0}} from both sides of Eq.(11)
is not to be included. Now, the lemma is proved.



Lemma 3. Every expanded set D, ' is a subset of B, the set of patterns in the overlapped region.

D.'S B, Vi. (12)

prodf. Recall that in the proposed algorithm, D, ' is defined as
Djz{?c\ Neighbor _ Entropy(x)>0, xe D;}. (13)

Compare 1t with the definition of B
B={x| Neighbor Entropy(x)>0. x= D}. (14)

Since D;’S are subsets of D, D, s are subsets of B.

Lemma 4. Different expanded sets D, s are disjoInt.

D'’ N\D =o, Vi+j. (15)

proof. Every expanded set is a subset of the evaluation set by definition (see stepll]| in the algorithm)
D' D, Vi (16)

By Lemma 1, D;’S are disjoint from others for all i's. Therefore, thelr respective subsets are disjoint,
t0o.

Theorem 1. (Termination of the Algorithm)
If the while loop of the proposed algorithm exits after N iterations, then N 1s finite.

1+1

proof. We show that N<oo. Inside the while-loop of the algorithm (Fig. 3), condition D, ~=+@ holds.
Therefore, Dﬂf#@, 1=0,---,N—1. That means »( Dﬂf)zl, 1=0,---, N—1. bSince Sﬂf 1s defined as

7 — ] . .
*Uo D, and D, "'s are disjoint (Lemma 4), we get
S

n( S,)= in( D). (17)

Since n( D,))>1, i=0,--,N—1, #( S,") is monotonically increasing. In the meantime, the union of all

the Dﬂj’s generated in the while loop 1s bounded by B (Lemma 3). So, we obtain
N—1

U D 'c B, (18)

Now, Lemma 4 leads us to

jioln( D.Y<n( B). 19)



Combination of Eq.(17) and Eq.(19) results in
7( SGN)én( B). (20)

Since n( B)XM and finite, »( 8,") is finite. Thus, N is finite.y

Theorem 2. (Termination of the Algorithm)

The number of patterns whose kKNNs are evaluated is (- #( BC)Jrﬂ( B7)), where B is
the complement set of B or D—B, and #» 1s the proportion of mitial random sampling,

(0< < 1).

N .
proof. The number of patterns whose kNNs are evaluated 1s denoted as Zo n( D). Let us first

consider cases from =1 to N. We have

N . N _
Zlﬁ( D)) = 7’3( ‘L:Jl D;) by Lemma 1
= n| A ENN(2)) by Lemma 1)

D, U--U D,
< n( ) ENN( x)) by Lemma 3

¥= B

= n( B").

Let us include the case of 7=0.

> n( DY<n( D) +n( B, 29)

where n( D.') is approximately #- n( D) because D.' is randomly chosen from D. In the meantime,
some patterns of DEU are already counted in 2( BT). The number of those pattern amounts to

7( DGD) since Dﬂoz{;\ Neighbor _ Entropy(x)>0, x< DEU} and DGUE B< BT, To get a tighter
bound, therefore, we exclude the duplicated count from Eq.(22):

N .
;D%( DHY<n( D' — D"Y+n( BY), (93)

where 7( DEU — DGU) denotes the number of the patterns which do not belong to B. It amounts

n( D' — D)) =n( D")—n( D,

- (B)
~n( D) —n( D) (24)
- i — ™ & %(B)
=y n(D)—yr- n( D) 2( D)

=y %( BC),

where D)< D, Thus, we get the following bound by Eq.(21) and Eq.(24):

;NDn( DYy<rn( BY+n( B, (25)



The time complexity of the fast algorithm is (» - 6+56%) - M where b°=xn( BY) and b»*=# B).
Practically, 6 is almost as large as M, ie., b“~M. But the initial sampling ratio » is usually quite

small, i.e, »<1. Thus the first term #- M may be assumed to be insignificant. In most real world

problems, &7 is just slightly larger than &, thus the second term &57M can be approximated to »M. In
short, (v b°+b7)M can be simplified as &M, which of course is much smaller than M* since b M.

Fig. 4 depicts the theoretical relationship between the computation time of t
that of the naive algorithm) and &. The computation time of the naive algorithm

he fast algorithm (with
M*does not change as

long as M 1s fixed. Meanwhile, that of the fast algorithm 1s linearly dependent on &. Therefore, the fast

algorithm 1s always faster than the naive algorithm except the case of o= M.

>

Naive Algorithm
(, ~0 M?

Fast Algorithm
~ O (bM)

Computation Time (sec)

v
0 02M 04M 0.6M 0.8M M
Degree of Overlap (}))

Fig. 4. Theoretical relationship between the computation time and

4. Experimental Results

b.

The fast algorithm runs in bM, roughly speaking. We now show whether the complexity stands in the

practical situations through experiments. A total of M patterns, half of M
randomly generated from a pair of two-dimensional uniform distributions:

| i —1 | ] 1

from each class, were

L, 1=1, 2.

(1I(21)j+1 } (_Zjll}fb)

We set b to every decile of M, 1e. b=0,0.1M 0.2M, ---,0.9M, M Fig. 5 shows the actual computation

time for various values of b when (a) M=1,000 and (b) M=10,000, respectively. They clearly show
that computation time 1s exactly proportional to 5. Compare with the Naive algorithm’s computation time

that 1s constant regardless of b. Fig. 6 also gives almost identical pictures: the percentage of selected

and expanded patterns i1s proportional to 5.
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Fig. 5. Actual computation time for various values of b.
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Fig. 6. Actual percentage of expanded/selected patterns for various values of b.

H. Conclusion

We proposed a fast pattern selection algorithm which evaluates and

decision boundary based on the neighborhood properties. We also proved that it roughly takes

time and empirically confirmed it.

Currently, there are two Iimr
that the classes are overlapped

the experiment. A more sclentif

ations. First, the proposed a
(a non-separable case).
separable from the other, an empty set will be re
rarely happen 1n real world applications. Second, the number of neigh

Therefore,

_10_

selects only the patterns near the
O(bM)

gorithm was developed under the assumption
if one class 1s remote and clearly
urned as a selected

pattern set. Of course, such cases

vors, k, was empirically set to 4 mn

ic method needs to be employed. It 1s currently under investigation.
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