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Abstract

Background: Drug repurposing has been motivated to ameliorate low probability of success in drug discovery. For
the recent decade, many in silico attempts have received primary attention as a first step to alleviate the high cost
and longevity. Such study has taken benefits of abundance, variety, and easy accessibility of pharmaceutical and
biomedical data. Utilizing the research friendly environment, in this study, we propose a network-based machine
learning algorithm for drug repurposing. Particularly, we show a framework on how to construct a drug network,
and how to strengthen the network by employing multiple/heterogeneous types of data.

Results: The proposed method consists of three steps. First, we construct a drug network from drug-target protein
information. Then, the drug network is reinforced by utilizing drug-drug interaction knowledge on bioactivity and/
or medication from literature databases. Through the enhancement, the number of connected nodes and the
number of edges between them become more abundant and informative, which can lead to a higher probability
of success of in silico drug repurposing. The enhanced network recommends candidate drugs for repurposing
through drug scoring. The scoring process utilizes graph-based semi-supervised learning to determine the priority
of recommendations.

Conclusions: The drug network is reinforced in terms of the coverage and connections of drugs: the drug coverage
increases from 4738 to 5442, and the drug-drug associations as well from 808,752 to 982,361. Along with the network
enhancement, drug recommendation becomes more reliable: AUC of 0.89 was achieved lifted from 0.79. For typical cases,
11 recommended drugs were shown for vascular dementia: amantadine, conotoxin GV, tenocyclidine, cycloeucine, etc.
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Background
Drug development and trials in animals and humans is a
long and costly process. In general, the whole process of
de novo drug discovery takes 10 to 17 years for develop-
ment with the cost rising from 300 to 600 million dollars
[1]. To overcome the de facto difficulty, drug repurposing
(or repositioning) has received much attention in recent
years [2, 3]. Drug repurposing finds new indicators in
already-approved drugs that could be used for treating
other diseases. Sometimes, side-effect of a certain drug
gives a hint on its repurposing to other diseases.

Botulinum toxin and sildenafil (a.k.a., Viagra) are well
known as such cases. There are three channels of ap-
proaches, in vitro, in vivo, and in silico, in drug repurpos-
ing. Compared to de novo drug discovery, in vitro, and in
vivo approaches have advantage of reducing the develop-
ment time, down to 3 to 12 years but they are only avail-
able with a good years of expertise on clinical and
pharmaceutical domain [4–6]. To find new indicators for
drugs, in silico approaches, on the other hand, attempt
computational dry-runs that simulate and search all the
possible combinations of drugs and diseases from data-
bases which have been more available nowadays. In fact,
one channel is not an alternative to others but rather com-
plementary to each other, so it is accepted as a packaged
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pipeline for drug repurposing, in silico prior to in vitro
and in vivo [7].
Up to date, there have been numerous studies for in

silico drug repurposing. There are two streams of those
studies: drug-centric and disease-centric. The former
performs repurposing in pharmaceutical aspect concern-
ing chemical structures of drugs (or compounds) and us-
ages of medication [8–10]. Lamb et al. (2006) used
information on molecule movements of components of
drugs, Keiser et al. (2009) examined chemical structure
and target protein information of drugs, and Chang et
al. (2010) utilized both tissue localization and gene ex-
pression patterns for analysis. On the other hand,
disease-centric approaches repurpose drugs in patho-
logical and clinical aspects, by obtaining knowledge from
disease-gene or disease-protein relations [11, 12]. Cam-
pillos et al. (2008) predicted new drug targets by using
similarities between diseases based on possible
side-effects appearing from drugs. Meanwhile, Chiang et
al. (2009) suggested a drug repositioning approach under
the assumption that if two diseases share few, but simi-
lar, number of treatments, then there is a room for repo-
sitioning. Despite the disparate views, whether it is
drug-centric or disease-centric, the main idea of disclos-
ure for new usages of existing drugs is similarity between
drugs or between diseases.
One effective way to describe similarities between en-

tities is network representation of nodes and edges.
Given a set of drugs, drugs are the nodes and drug-drug
similarities (or associations in a broader concept) are
represented on the edges [13]. In these days, there are a
number of pharmaceutical and biomedical data sources
that can be employed for calculating similarities between
drugs. Also, there have been constant advances in ma-
chine learning algorithms that can represent heteroge-
neous types of data as a form of network and draw a
good inference from the network structure. In a word, a
bunch of data sources and tools of high quality are more
available than ever. These environmental advantages can
lead in silico drug repurposing to a more reliable and
realistic approach.
In this study, we propose an algorithm performing

drug repositioning based on a network of drugs. We
start from presenting how to construct a drug network,
and how to evolve or strengthen it, taking benefits of
multiple/heterogeneous types of data. For the process of
constructing a drug network, we first construct a net-
work with information on drug-target protein. The drug
network, however, can be sparse (mostly unconnected)
due to unidentified target proteins for drugs or insuffi-
cient knowledge of the drugs. In drug repurposing per-
spective, if a drug is undefined in terms of interactions
with other drugs, we cannot obtain sufficient pharma-
ceutical evidences for repurposing existing drugs to

other disease. In network-modeling perspective, a sparse
network may not provide satisfactory inference or per-
formance because of deficiency in flow of information
via edges [14–17]. To overcome the difficulty, we en-
hance the original network to make up the lack of con-
nections by utilizing complementary data sources.
Complementary Linkage with Anchoring and Scoring
(CLASH) is employed [15]. It is an algorithm that com-
plements a network by using external knowledge while
preserving original information of the network. In this
study, the algorithm is applied to our drug network and
further extended by including more data sources. In the
network, drug-protein relation become a base source,
and additional information on bioactivity and medica-
tion from PubChem and PubMed strengthen the net-
work capability by complementing insufficient
connections of network. On the resulting drug network,
scoring is run for finding candidate drugs for repurpos-
ing. Scores endowed to drugs provide priority ranks for
recommendation. At last, drugs in top-tier become the
candidates of repurposing. Figure 1 describes the con-
cept of reinforcement for drug network. In the center,
there are two networks: (a) original network, (b) Rein-
forced network. Network (a) is constructed only with
drug-target protein association. Network (b) is the rein-
forced network with additional information. In network
(a), two drugs 1 and 8 (marked as blue) are disconnected
in the graph. If drug-target protein association is not
identified or if some of drugs do not have shared target
proteins, they are isolated in the graph. In such case, if
we want to find similar drugs or compounds with drug 3
(marked as red), we cannot measure the scores for drug
1 and 5 (See Fig. 1(c)). However, if the network is rein-
forced with additional information, as in network (b), we
can calculate the scores for all drugs including drug 1
and 8 (as shown on the right side of the Fig. 1). With
the reinforced drug network, it leads to a higher prob-
ability of success of in silico drug repurposing.
More details of the how to construct drug network

and how to reinforce/complement the network is de-
scribed in the methods section. In the results, we pro-
vide experimental results on validity and utility for drug
scoring. Also, we present and discuss the typical results
for drug scoring with vascular dementia.

Results
Experimental settings
The proposed method was applied to 5442 drugs and
1938 diseases. A list of 5442 drugs and 1938 diseases
was obtained from PubChem and Medical Subject Head-
ings (MeSH) of the National Library of Medicine. For re-
lation data, we used 91,450 drug-target protein
information and 61,794 disease-drug association. For the
original drug network, 4738 drugs (out of 5442) and
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19,465 target protein were used, leaving other 704 drugs,
which had no drug-target protein information, uncon-
nected. The edges were calculated with cosine similarity
between 19,465-dimensional drug vectors. To enhance
the drug network, 77,729 drug-drug interaction know-
ledge from PubChem and PubMed were used as external
data sources. These external knowledges include drug
interactions (or compound relation) shown in literature,
medications, and bio-activities. From this point onward,
we define the original drug network as a network con-
structed with drug-target protein information and the
enhanced network as a network complemented with ex-
ternal sources of information. To validate performance
of drug network, we utilized disease-drug associations.
Table 1 summarizes the data and its source used for our
experiment.
To verify the performance of the proposed drug repur-

posing method, we applied it to prediction of drugs for
treating a certain. The performance comparison was
conducted on three networks: original network, data fu-
sion network, enhanced network. Original network was
constructed by 4738 drugs with drug-target protein in-
formation. To construct data fusion network, it was sim-
ply integrated with original network and drug-drug

interaction network. Data fusion network is simply a
combination of two networks. The enhanced network is
a proposed method that selectively uses drug-drug inter-
action for external sources based on original network.
To obtain predictive outputs for drugs, we used graph
based semi-supervised learning algorithm. Given a target
disease, SSL provides scores for all drugs. For experi-
ment setting, we first selected a target disease and gave
label ‘1’. Then if we know 20% of drugs already in use
for the target disease in a priori, we randomly assigned
20% drugs associated with the target disease with label
‘1’s and gave ‘0’s to remaining drugs (See Fig. 2). The ex-
periment was carried out with 5-fold cross validation
and the whole experiment was repeated 10 times.

Results for comparative performance
Table 2 shows the overall properties of three networks.
Original network was constructed by 4738 drugs with
already existing information. Data fusion network is sim-
ply a combination of two networks. For the enhanced
network, the number of drugs increases from 4738 to
5442 and the drug-drug associations from 808,752 to
982,361. The density of original network is 5.46% while
that of the enhanced network is 6.64%. Network density
is calculated by actual connection over potential connec-
tions. We achieved an improvement of density with an
increase by 21.47%. The density of data fusion network
is larger than that of the enhanced network. In case of
enhanced network, the newly connected edge is select-
ively used. This is a selective selection of information
that does not degrade performance after reinforcement.
The validation results are summarized in Fig. 3.

Figure 3 illustrates a comparison of performance of the
original network and the enhanced network. The net-
work performance is measured by the Area under the
ROC curve (AUC) [18]. In the figure, the distribution of
AUC for 1938 diseases in both original and enhanced
network is presented. The x-axis represents section by
section AUC and y-axis represent frequency of target
disease belonging in the range. The figure shows that

Fig. 1 The main idea of drug repurposing with network reinforcement: Red circle represents the originally known drugs, and blue circle represents isolated
(disconnected) drugs from the drug network. The center panel shows the drug network constructed by drug-protein association and its reinforced network
with additional information. Left and right panel show the scoring results according to (a) and (b), respectively

Table 1 List of data sources to construct/enhance drug
networks

Description # of data Sources

Drug 5442 PubChem (https://pubchem.ncbi.nlm.nih.gov/)

Disease 1938 MeSH (https://www.ncbi.nlm.nih.gov/mesh)

Protein 19,465 Entrez Gene (https://www.ncbi.nlm.nih.gov/
gene)

Drug-Protein 91,450 PubChem (https://pubchem.ncbi.nlm.nih.gov/)
PubMed (https://www.ncbi.nlm.nih.gov/
pubmed/)
PharmGKB (https://www.pharmgkb.org/)
DrugBank (https://www.drugbank.ca/)
T3DB (http://www.t3db.ca/)
TTD (http://bidd.nus.edu.sg/group/cjttd/)
CTD (http://ctdbase.org/)
DCDB (https://doi.org/10.1093/database/
bau124)

Drug-Drug
Interaction

77,729

Disease-Drug
Association

61,794
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the distribution from the proposed enhanced network is
shifted towards right compared to that of the original
network. This demonstrates that the network perform-
ance of the enhanced network is outstanding compared
to the original network. Moreover, from the box plot,
which describes the overall AUC, the proposed method
improves the performance up to Avg. 0.89 (lifted from
0.79). As shown in the box plot, the average of the AUC
for data fusion network was 0.85. The performance dif-
ference between data fusion and enhanced network may
not appear to be significant. However, through the devi-
ation, the enhanced network is more robust in the pre-
diction results than the other two networks. The p-value
for statistical tests for pairwise comparison between ori-
ginal network-reinforce network and data fusion
network-reinforce network are 0.0003 and 0.0005,
respectively.
To demonstrate the network reinforcement, we

present a sub-graph of the enhanced network. Figure 4
depicts a snapshot of a small sub-graph of 70 drugs
drawn from the proposed method. In the network, each
node represents a drug or a compound. The black circles
represent originally connected drugs and the red circles
represent isolated ones that do not have shared target
proteins with other drugs or do not contain sufficient
target-protein information. The solid and dotted lines
describe original connection with information on shared
target protein and newly connected edges using CLASH,
respectively. Three drugs were originally unconnected to

the network due to lack of shared target protein. By ap-
plying the proposed method, unconnected nodes were
connected: network density increased from 11.18 to
14.87%; the drug coverage increases from 67 to 70, and
the connections between drugs from 270 to 359.

Discussion
To show utility of drug scoring, we applied the in-silico re-
purposing method to dementia disorder. Dementia refers
to a condition in which a person has multiple cognitive
impairments and mental disorders that severely affect
daily life. Symptoms of dementia include loss or changes
in memory, problems with abstract thinking, disorienta-
tion to time or places, and drastic changes in personality
[19, 20]. Among various types of dementia, more than
80% of patients have Alzheimer’s disease and vascular de-
mentia, which have cranial nerve lesion. Since the patho-
genesis of these diseases have not been completely
identified, drugs used in the clinical field only aid in pre-
venting or relieving symptoms of the diseases. Therefore,
drug discovery for dementia treatment is an important
issue in the pharmaceutical industry. Among various de-
mentia disorders, we demonstrate typical results for vas-
cular dementia and Parkinson diseases. Vascular dementia
is a decline in thinking skills caused by conditions that
hinder blood flow to the brain, thereby depriving brain
cells of vital oxygen and nutrients. In contrast to Alzhei-
mer’s disease, vascular dementia accompanies neurological

Fig. 2 Experimental setting for measuring prediction performance: (a) a drug network constructed with five drugs with target disease D2. If dr2
and dr4 are already in use for treating D2, we randomly select one and assign label ‘1’ (b) validation of the SSL result for non-selected (but already
in use) dr4

Table 2 Overall properties of constructed networks

Original network
(Reference)

Data fusion network
(Simple integration)

Enhanced network
(Proposed method)

Number of nodes (drugs) 4738 5442 5442

Number of edges 808,752 1,054,324 982,361

Density of networks 5.46% 7.12% 6.64%

Nam et al. BMC Bioinformatics 2019, 20(Suppl 13):383 Page 4 of 10



Fig. 3 Performance improvement of the enhanced network: the gray and blue bar represents histogram of AUC for the original and enhanced
network, respectively. The histogram is shifted towards right for the enhanced network. In addition, the inserts summarize overall average AUC
with deviation. The p-value for statistical tests for pairwise comparison between original network-reinforce network and data fusion network-
reinforce network are 0.0003 and 0.0005, respectively

Fig. 4 A snapshot of the enhanced drug network: the solid lines represent original connections with information on shared target protein, and
the dotted lines represent newly connected edges using CLASH. Red circles represent orphan drugs but linked to the network by the proposed
method. For better readability, the network is simplified. More detailed one is provided in Additional file 1

Nam et al. BMC Bioinformatics 2019, 20(Suppl 13):383 Page 5 of 10



symptoms such as hemiplegia, facial palsy, blindness, vis-
ual field defects, gait disturbance, etc. [21, 22].
Figure 6 depicts the drug network focused on vascular

dementia. On the graph, the drugs that have potential
for treating vascular dementia are positioned so that it
reflects the result of drug scoring: the closer the drug to-
wards vascular dementia, the higher of its possibility of
treatment. In the Fig. 5(a), the gray circles represent
drugs or compounds that are already in use for vascular
dementia and the blue circles represent candidate drugs
that are newly found with drug scoring. The network is
divided into three regions, in which the 1st tier region
around the center consist of drugs with score value
greater than 0.9. Among six drugs in 1st tier region,
memantine, prednisolone, azathioprine, AC1LIPDP, and
nitric oxide are already in use for treating vascular de-
mentia. Figure 5(b) describes the difference of scoring
results according to the types of network. Left panel
show the results of drug scoring using original network
and the right panel is the enhanced network. In the ori-
ginal network, only originally known compounds had a
high score. On the other hand, the enhanced network
not only shows the already used drug but also the new
candidate drug. This result shows that the network in-
cludes drug-drug interaction information obtained
through literature as well as drug-target protein infor-
mation via network reinforcement.
Table 3 shows traits and validations for recommended

drugs. For exemplary cases, we examined Amantadine
and Conotoxin GV, which are top two recommended
drugs with high score values. In the enhanced network,
Amantadine was connected with memantine based on

drug-drug interaction information from bioactivity and
literature. Usually, Amantadine is an antiviral used in
the prophy-lactic or symptomatic treatment of influenza
but is also known as an antiparkinsonian agent to treat
extrapyramidal reactions, and for postherpetic neuralgia.
Unlike Amantadine, Conotoxin GV was already con-
nected in the original network. While having low score
in the original network, Conotoxin GV had high score
value with newly connected edges from the enhanced
network. Therefore, we recommend Conotoxin GV as a
newly found candidate drug for repurposing. For some
verification, Conotoxin GV is known to act on N-methyl
D-aspartate acid receptor (NMDA receptor), where
NMDA receptor is responsible for memory and learning
functions in the brain. Other nine candidate drugs are
shown in Fig. 5(a). The implemented results can be used
to identify the priorities of candidate drugs with poten-
tial of dementia treatment. This can serve as a screening
tools for in vivo or in vitro drug discovery.

Conclusion
In this study, we propose an enhanced drug network
that could be utilized for in silico drug repurposing. The
method consists of three steps. First, we constructed a
drug network based on drug-target protein information.
Second, in order to overcome inherent difficulty, sparse-
ness of the network, we enhanced the network with vari-
ous external sources. To perform this, a network
complementation algorithm, CLASH was employed. The
algorithm succeeded in connecting 704 drugs previously
isolated. Finally, to the resulting network, we applied
graph based semi-supervised learning to score drugs.

Fig. 5 Enhanced drug network focused on vascular dementia: (a) The network is divided into three regions, in which the 1st tier region around
the center consist of drugs with score value greater than 0.9. (b) Left panel shows the drug scoring results using original network. Right panel
shows the proposed scoring results using enhanced network
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The top ranked drugs were recommended as candidates
for repurposing. We validated the method by applying it
to 5442 drugs and 1938 diseases. The AUC performance,
we obtained is 0.89, a significant lift from 0.79. We
showed the typical cases of vascular dementia and Par-
kinson disease to present exemplar utility of the

proposed method: 11 candidate drugs were recom-
mended and validated for repurposing. Not limited to
the dementia disorders, the proposed method can be
generally extended to other diseases.
This research has novelty in the following aspects. The

proposed method not only utilizes drug-target protein

Table 3 Traits and validation of the recommended drugs

Drug
(Compound)

Amantadine Conotoxin GV Tenocyclidine Cycloleucine

Remarks for
validation

Bioactivity/Medication: Amantadine
can be used as an anti-parkinsonian
agent, to treat extrapyramidal reactions,
and for postherpetic neuralgia.

Enhanced Network:
Conotoxin GV is known
to act on N-methyl D-
aspartate acid receptor
(NMDA receptor)

Sharing target protein:
Tenocyclidine share four target proteins
with memantine: Alpha-7 nicotinic
cholinergic receptor subunit, Glutamate
receptor ionotropic, NMDA 2A / 2B / 3A

Sharing target protein:
Cycloeucine share one
target protein with
memantine: Glutamate
receptor ionotropic,
NMD1;
PMID10051153, 7,773,540

Fig. 6 Drug repurposing with network reinforcement: The proposed method has three steps; (a) drug network construction based on drug-target
protein, (b) network reinforcement with external knowledge such as bioactivity, medications, etc., and (c) drug scoring with SSL for a specific
disease based on the enhanced network
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information, but also employs latest research informa-
tion on drug-drug interactions. Thus, it is regarded as
effective for finding new indicators in drugs. One of ad-
vantages of the proposed method lies in that we can in-
stantly and easily update the candidate drug list with
recent knowledge. And, the network-based approach can
ease us to read and comprehend intricate associations
between drugs and/or diseases. We can further improve
the proposed network by expanding scopes of comple-
mentary knowledge sources to drug side-effects and
drug chemical structures, etc. Also, we did not consider
negative correlation of newly added connections with
antagonistic properties. It would be interesting to con-
sider such cases and develop more sophisticated algo-
rithms. On the other hand, we can personalize the
network by enhancing it with patient-specific genetic in-
formation. This personalized network will be a strong
tool for the era of precision medicine.

Methods
The drug repurposing method that we propose in this
study consists of three steps: drug network construction,
drug network enhancement, and drug scoring. In the first
step, we construct a drug network by calculating similarity
between drugs based on shared drug-target protein. How-
ever, since not all relationships between drugs can be
identified with shared target proteins, the network can be
very sparse. With such sparseness, the number of drugs
for repurposing can be very limited. To circumvent the
difficulty, we enhance the drug network by increasing the
number of nodes and edges. We apply a network comple-
mentation algorithm, CLASH. This increases the density
of network leading to higher and more stabilized perform-
ance: the latest possible information from PubChem and
PubMed is reflected to the network by connecting two
drugs that previously have no connection. Finally, a candi-
date drug chosen out of approved ones is applied as a new
usage to a certain disease. With the enhanced drug net-
work, we use a scoring algorithm that assigns scores to
drugs when a specific disease is given. Disease-drug asso-
ciation is used to pick the related drugs to the disease.
Through the procedure, the priority of drugs is deter-
mined and the ones in the top-tier are recommended as
candidates for repurposing drugs.

Drug network construction
Drug network is a graph, G = (V,W), that represents
connection between drugs (or compounds) with nodes
and edges. In a drug network, a node denotes drug and
an edge denotes a value obtained by calculating similar-
ity between two drugs based on their shared target pro-
teins [13]. More specifically, a drug vector has
n-dimensional protein vector, and the similarity between
two drugs are calculated with cosine similarity between

drug vectors (See Fig. 6(a)). On the graph, similarity be-
tween two drugs are assigned with a weight value on the
edge and higher of its value implies higher relation be-
tween two drugs.

Network reinforcement
The complementation process can be applied to two
cases. First, drugs with no information on target pro-
teins are unconnected with other drugs in the net-
work. This corresponds to dr1 in Fig. 6(a). Second,
two drugs can be unconnected if they do not have
shared target proteins. This corresponds to dr2 and
dr4 in Fig. 6(a). To enhance the network, we apply a
complementation algorithm, CLASH, which reinforces
a network with external source while preserving the
original source of information [15]. The basic as-
sumption of the complementary process is to main-
tain the properties of the original network. The
algorithm consists of anchoring step for initializing
connections on nodes, scoring step for determining
priority of connection, and connecting step for con-
firming the connection. The algorithm stops when
there are no more possible nodes to connect. With
CLASH, we first initialize connections with anchoring
step, then finalize complementation in step by step
manner to prevent the performance of the original
network. For CLASH, not all external source of infor-
mation is used. The algorithm only accepts new
sources that does not harm the original knowledge of
information. Furthermore, if two nodes are connected
in the original network, no external source is used to
reinforce the network. The following describes an ex-
emplary process of network reinforcement.

Anchoring Step: When we have n drugs, we construct
a drug network G = (V,W). In the graph, we can define
the set of original drugs SO = {vi| vi∈V, i = 1,… , n}, set
of connected drugs Sc = {vi| vi, vj∈ SO, j vi~vj}, and
set of isolated (disconnected) drugs SD = {vi| vi, vj∈
SO, j vi vj}. At the anchoring step, complementary
algorithm builds the pendant edges (virtual edges)
between an isolated drug and connected drugs from
available external sources. Then we have a anchoring
set of vi, S

i
A ¼ fv jjvi∈SD; v j∈Sc; vi � v jg where vi~vj is

identified from available external sources. And we have
a validation set of vi, S

i
V ¼ ScnSiA. In Fig. 2(b), dr1 is

initially anchored to {dr2, dr3, dr5} based on external
source of information. The anchoring set SA = {dr2, dr3,
dr5} remains connectable drugs. At this point, edges
between isolated drugs SD and connected drugs SC
remain virtually connected.
Scoring Step: The scoring step allows a disconnected
drug to select connectable drugs from anchoring set
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SA. To order the connectable drugs, we apply graph-
based semi-supervised learning (SSL). (more details on
SSL is described in drug scoring section) In a virtually
connected graph, SSL calculate the scores f = {f1, f2,…
fn}

T when a disconnected drug is given. In Fig. 6(b), the
scores for anchored drugs {dr2, dr3, dr5} have the score
values {0.9, 0.8, 0.5}, respectively.
Connecting/Stopping Step: This is the confirmation
step for allowing isolated (disconnected) drugs to be
connected to the graph based on scoring results. The
order of connection is determined by scores on
anchored drugs. The connection step sorts f1,… , fn by
descending order of scores f and it connects vi to vj ’s
which have the largest scores. Complementary
algorithm check network performance by using
validation set SV to preserve the network’s property
which means that the connecting step prevents the
degradation of network’s performance. The algorithm
stops when there are no more unconnected nodes, no
more external data, or the performance of the network
decreases. In Fig. 6(b), three connections are possible
with available external source but dr1 and dr5 are not
connected due to the criterion of finalizing the
connection. The degree of harmfulness of external
source is determined by measuring change in
performance of the network.

Drug scoring for repurposing
Given a specific disease, the enhanced network recom-
mends candidate drugs for repurposing through drug
scoring. The scoring process determines the priority of
recommendations and utilizes one of machine learning
algorithm, graph-based Semi-Supervised Learning (SSL).
Since drug-drug interactions are sparsely known, most
machine learning algorithms cannot perform well. On
the other hand, SSL can predict unlabeled nodes by
using both labeled and unlabeled nodes. If we let the
similarity matrix of the constructed drug network as W,
SSL uses the graph Laplacian matrix, L, and yields score
f from the following functional:

f ¼ I þ μLð Þ−1y

where f = (f1, … , fn)
T, y = (0, … , 0, yi = 1, 0, … , 0)T, and

μ is a user-specified parameter. Here, the graph Lapla-
cian L is defined as L = D −W where D= diag (di), and

di ¼
X

j

wi j For more details see [23]. The larger score

of f for a drug implies higher possibility of treating the
given disease. In Fig. 6(c), we recommend drugs in the
top-tier, in the order of f-score, as candidates for
repurposing.

Additional file

Additional file 1: Figure S1. A snapshot of the enhanced network with
150 drugs: the solid lines represent original connections with information
on shared target protein, and the dotted lines represent newly
connected edges using CLASH. Red circles represent orphan drugs but
linked to the network by the proposed method. (PDF 751 kb)
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