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Abstract

Summary: Immune diseases have a strong genetic component with Mendelian patterns of inherit-

ance. While the tight association has been a major understanding in the underlying pathophysi-

ology for the category of immune diseases, the common features of these diseases remain unclear.

Based on the potential commonality among immune genes, we design Gene Ranker for key gene

identification. Gene Ranker is a network-based gene scoring algorithm that initially constructs a

backbone network based on protein interactions. Patient gene expression networks are added into

the network. An add-on process screens the networks of weighted gene co-expression network

analysis (WGCNA) on the samples of immune patients. Gene Ranker is disease-specific; however,

any WGCNA network that passes the screening procedure can be added on. With the constructed

network, it employs the semi-supervised learning for gene scoring.

Results: The proposed method was applied to immune diseases. Based on the resulting scores,

Gene Ranker identified potential key genes in immune diseases. In scoring validation, an average

area under the receiver operating characteristic curve of 0.82 was achieved, which is a significant

increase from the reference average of 0.76. Highly ranked genes were verified through retrieval

and review of 27 million PubMed literatures. As a typical case, 20 potential key genes in rheuma-

toid arthritis were identified: 10 were de facto genes and the remaining were novel.

Availability and Implementation: Gene Ranker is available at http://www.alphaminers.net/

GeneRanker/

Contact: shin@ajou.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of key disease-genes, whose products play a central

role in monogenic or genetically complex diseases, is a major aim of

human genome research (Venter et al., 2001). The key genes may

also be bio-markers, target genes (proteins) or drug targets. Thus,

key gene identification is important to developing new treatments

for patients and discovering new drugs for treating diseases. To

identify key genes, in silico methods are applied as a preliminary

procedure prior to in vitro and in vivo approaches (Hurle et al.,

2013). To evaluate a disease, in silico approaches use computational

dry runs that simulate and search all possible combinations of genes,

diseases and drugs from databases, which have become more widely

available. There have been numerous successful trials to identify key

genes triggered by in silico approaches, such as XPC, BAP1 and

Scotin in lung cancer; MYB and PCM1 in leukemia (Barski et al.,

2013); ATM, PPP1R13L, FOSL2, ERBB4 and HIP1 in breast can-

cer; and TP53, JUN, PIK3R1, HTT and HNF1A in diabetes mellitus

(Ganegoda et al., 2015).

For key gene identification, various machine learning algorithms

have been widely used. Gardiner et al. (2012) used structural
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equation modeling (SEM) to validate kidney injury molecule-1 as a

biomarker of chronic kidney diseases. SEM is a simple method for

imputing relationships between unobserved constructs from observ-

able variables, providing interpretation on the relations between

genes. Zhao and Li (2010) proposed ‘drugCIPHER,’ a framework

based on pharmacological and genetic correlations throughout the

genome. The system predicts key gene–drug interactions. Based on

the protein interaction, a linear regression model was constructed

using a combination of target validity, drug treatment similarity and

chemical similarity. Bakheet and Doig (2009) proposed a method

for identifying new potential target genes for drug discovery with

support vector machines. Protein sequence properties and amino

acid composition of protein, hydrophobicity and PEST were used.

Zhao et al. (2011) provided a gene scoring model. The score was

calculated by Katz-centrality, which is similar to the well-known

PageRank algorithm. The score was based on gene expression values

in addition to proximity in protein–protein interactions (PPIs).

Most approaches including those described above identify new

target genes by obtaining knowledge from disease–gene (or protein)

relations and gene–gene relations (Campillos et al., 2008; Chiang and

Butte, 2009). For immune and inflammatory diseases (disorder), it is

more promising to use information of the underlying genetic relation

when detecting key genes. Immune diseases are generally complex

genetic diseases in which genes and the environment interact in un-

known manners. Particularly, immune diseases have a strong genetic

component with Mendelian patterns of inheritance (Gregersen and

Olsson, 2009) and tend to appear in families (Ermann and Fathman,

2001). Therefore, recent epidemiologic and pathogenesis studies have

suggested numerous commonalities between the pathogenesis of

prototypic autoimmune diseases such as rheumatoid arthritis (Abou-

Raya and Abou-Raya, 2006). To model an immune disease, a gene

network-based model seems to be the most suitable approach.

Immune diseases are mostly caused by genetic propensity and are like-

ly to share genes. In network representation, the genes tend to reside

in the nearby neighborhood in the network, making it easy to depict

the shared genes associated with the same or similar diseases.

In this study, we propose a network-based key gene scoring method

for immune diseases. The method is denoted as Gene Ranker through-

out this paper. It accommodates both numerous general genes and im-

mune disease-specific genes. Gene Ranker employs a network structure

to better feature the relations between genes. The PPI network is used

as a backbone network. Then, a weighted gene co-expression network

analysis (WGCNA) is incorporated as an add-on network to demon-

strate the peculiarities of respective immune diseases. However, any

WGCNA network in the category of immune diseases can be added

on, regardless of the given disease, if it passes a selection procedure.

This is designated because genetic sharing is well-known to underlie

the pathophysiology of immune or inflammatory diseases (Cotsapas

and Hafler, 2013). In addition, by using PPI as the backbone net-

work, we can expect some more (plausible) genes among those that

interact with the known disease genes (a WGCNA network cannot

be regarded as containing all genes related to an immune disease).

On the other hand, it is also helpful to overcome sparsity of individ-

ual WGCNA networks (Grigoriev, 2001) (usually, most machine

learning algorithms produce unstable results for sparse networks).

With the constructed network, Gene Ranker employs a semi-

supervised learning for gene scoring. Because few genes have been iden-

tified to play a key role in immune diseases, most machine learning

algorithms are not applicable because of a lack of labeled data. In con-

trast, semi-supervised learning can conduct learning with few labeled

data. Based on the resulting scores, Gene Ranker recommends the

genes, each of which is a potential key gene of an immune disease.

Figure 1 describes the concept of this study. There is a backbone net-

work in the center, as well as three different disease-specific networks.

(a) and (b) are obtained from WGCNA of disease A, while (c) is from

disease B. The network in the left panel is specialized for disease A by

overlaying the add-on networks (a) and (b) onto the backbone network.

Gene Ranker is specified for disease A and denoted as Gene Ranker

(A). In the same manner, Gene Ranker (B) is constructed. If network (a)

is helpful for predicting key genes associated to disease B, Gene Ranker

(B) can incorporate (a) as its member network. More detailed descrip-

tions regarding network construction, integration with selected

networks and scoring are explained in the following sections. In the ex-

periment, the highly ranked genes are validated by retrieval and review

of existing studies by text mining of nearly 27 million PubMed litera-

tures. Additionally, as a typical case, 20 potential key genes for rheuma-

toid arthritis are provided; half of the genes are publicly known to be

related to the disease although there has been no information on which

genes are more important than others. However, in the proposed

method, the priorities of those genes are measured by means of scoring.

The remaining 10 genes were novel genes identified in this study.

2 Materials and methods

The proposed method consists of three steps as shown in Figure 2:

(i) network construction, (ii) network selection and integration and

(iii) key gene scoring. Gene Ranker constructs a disease-specified

gene network by adding patients’ gene-expression data to the PPI

network. Next, gene scores are calculated by a graph-based semi-

supervised learning. The resulting gene scores and ranks can be used

to identify the priorities of known de facto disease genes and recom-

mend potential candidate genes.

2.1 Gene network construction
A gene network is a graph that represents genes (or proteins) as

nodes and connections between pairs of genes as edges. Depending

Fig. 1. Schematic description for main idea of the proposed method: The center panel is the backbone (base) network constructed by PPI network; left and right

panels are specialized for diseases ‘A’ and ‘B,’ respectively. Gene Ranker (A) is incorporated with a specific WGCNA based on the backbone network
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on how the value of the edge is obtained, different types of gene net-

works can be constructed. In the proposed method, a PPI network is

used as the backbone (base) network, in which the edges indicate the

presence or absence (‘1’ or ‘0’ respectively) of physical contact among

two or more proteins. Meanwhile, as an add-on network, WGCNA is

employed. WGCNA is conducted to measure pairwise correlations

between gene-expression values. Therefore, an edge of the WGCNA

network denotes the correlation coefficients between the expression

values of two genes. If PPI stands for representative gene–gene rela-

tion, WGCNA reflects the difference of co-expression for disease-

specific genes (note that it does not necessarily mean the difference of

the gene expression). The difference in WGCNA network specifies

disease specific co-expression genes. The PPI network contains gen-

eral information with gene coverage of all but 16 593 genes of nearly

25 000. In contrast, for the WGCNA network, the gene set varies de-

pending on the inclusion/exclusion of genes used for analysis. If it has

a low gene coverage, the network is sparse (see Fig. 2a).

2.2 Network selection and integration
Network selection: To construct a disease-specific gene network, it

is required to determine which WGCNA network is helpful for gene

scoring of a given disease. The criteria for network selection are sim-

ple. If the performance of an add-on network improves that of the

reference performance, the add-on network is added to the PPI net-

work. In this study, performance is measured as the area under the

receiver operating characteristic curve (AUC) and the reference

value is obtained from the PPI network. To technically rephrase this,

the criterion is AUCðW0 þWkÞ > AUCðW0Þ, where W0 denotes the

PPI network and Wk is the kth WGCNA network to be added. This

indicates that the gene set of the add-on WGCNA and its gene–gene

correlation values contain gene–gene information specific to the

given disease. As shown in Figure 2b, the second (W2) and fourth

(W4Þ networks meet the selection criteria.

Network integration: After screening the redundant or unneces-

sary networks from among all WGCNA networks, integration for the

selected networks is performed. Unit weights are used as coefficients

for the linear combination of networks
PK

k¼0 bkWk. Note that in

the pseudocode (Fig. 3), Wk is successively added; therefore,

b ¼ 1=ðKþ 1Þ1T, where 1T is a column vector of rank ðKþ 1).

More sophisticated approaches could be used for differently weighted

coefficients (e.g. Shin et al., 2007, 2009; Tsuda et al., 2005); however,

it would incur huge complication relative to the gain in accuracy, as

the WGCNA networks in this study are large and the respective net-

works show large variability in network density (most network inte-

gration methods expect the networks to be integrated to have similar

densities, so that the combining coefficients only concern the import-

ance of the information in the individual network).

2.3 Gene ranker: key gene scoring
With the integrated network, disease-specific gene scoring is per-

formed. The resulting scores are used to determine the priorities of

genes as key genes. For known disease-specific genes, the ranks of

involvement reveal which gene should be tested as a target gene

prior to testing other genes. In contrast, for unknown genes, the

ranks are reduced from the large set of genes to a smaller list of po-

tential candidate target genes.

Scoring employs a graph-based semi-supervised learning (SSL),

as disease-genes are sparsely known. Using few labeled data, most

machine learning algorithms cannot perform well, whereas SSL can

deal with such difficulty and perform prediction by propagating the

label information to unlabeled nodes along with edges (Chapelle

et al., 2009; Zhu and Goldberg, 2009). If the graph is disconnected,

propagation cannot continue. This motivates us to adopt the PPI

network as the backbone and incorporate add-on networks.

The following is the scoring procedure and formulation. Let y ¼
ðy1; . . . ; yn¼lþuÞT denote the label set of genes, f ¼ f1; . . . ; fnð ÞT de-

note the set of resulting gene scores, and W as the similarity matrix

of the integrated network. If we have l known genes and u unknown

genes, we set y ¼ y1 ¼ 1; . . . ; yl ¼ 1; ylþ1 ¼ 0; . . . yu ¼ 0ð ÞT.

Then SSL uses the graph Laplacian matrix L, and obtains score f by

minimizing the following objective function:

min f � yð ÞT f � yð Þ þ lf TLf : (1)

The graph Laplacian L is defined as L ¼ D�W , where D ¼
diag dið Þ and di ¼

P
iwij. The score f ¼ f1; . . . ; fl; flþ1; . . . ; fn¼lþuð ÞT is

the output solution of (1). The parameter l trades off loss and

smoothness (Chapelle et al., 2009; Zhu and Goldberg, 2009).

As described above, the integrated network is represented as a lin-

ear combination of K WGCNA networks with coefficient

b ¼ 1=ðKþ 1Þ. By replacing the single Laplacian L in (1) with the inte-

grated function
PK

k¼0 bkWk, the closed form solution is obtained as

f ¼ I þ l
XK

k¼0

bWk

0
@

1
A�1 y; b ¼ 1

Kþ 1
1T : (2)

Fig. 2. Overall procedure of the proposed method: (a) Backbone network is

constructed by PPI. It shows representative gene–gene relation. Add-on net-

works are constructed by the correlation coefficients between the expression

values of two genes using WGCNA. The edge of add-on network reflects the

deviation of expression values for disease-specific gene. (b) For the screening

process, Gene Ranker determines which WGCNA network is helpful for gene

scoring of the given disease. The criterion is AUCðW0 þWk Þ > AUCðW0Þ.
After screening, integration of the selected networks is performed. (c) To ob-

tain gene scores, Gene Ranker employs SSL. In the graph, all known genes

(marked in blue) are set as ‘1’ for the labeled set, and the remaining genes

(marked in white) are set as ‘0’ for the unlabeled set. The scoring curve shows

the predicted f-score (gene scores). The inserted genes between known genes

such as Genes 3, 5 and 9 are regarded as strong candidate genes (marked in

pink) (Color version of this figure is available at Bioinformatics online.)
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The resulting score f is rearranged as follows:

f 0 ¼ f �minðf Þ
max fð Þ �minðf Þ :

To identify the top-tier genes, the total n genes are sorted in

descending order. Next, the ranks are endowed to the labeled and

unlabeled genes. Every gene can be a candidate target gene, and a

user-specified parameter d limits the maximum number. Figure 2c

shows the scoring results: known genes are marked with a blue out-

line, unknown genes are marked as white in the network and genes

are marked in pink if they are chosen as candidate genes. On the

score curve, the inserted genes between known genes such as Genes

3, 5 and 9 are regarded as strong candidate genes. For more infor-

mation, see the pseudocode in Figure 3.

3 Results

3.1 Data
The data were collected for 27 immune diseases. An immune disease

(disorder) is defined as a dysfunction of the immune system, which

occurs when the body tissues are attacked by its own immune sys-

tem. These diseases can be characterized based on the components

of the immune system affected, whether the immune system is over-

active or underactive, and whether the condition is congenital or

acquired. Examples of (auto-)immune diseases include rheumatoid

arthritis, systemic lupus erythematosus, Sjogren syndrome, asthma,

HIV infection, multiple sclerosis, Hashimoto thyroiditis, juvenile

(type 1) diabetes, Addison disease and pulmonary fibrosis, among

others. We acquired these terms from the immune disease category

of MeSH (the abbreviation for medical subject headings of the

National Library of Medicine). It has a controlled vocabulary the-

saurus for disease names in the form of a taxonomy. When consider-

ing up to the second level of the taxonomy, there are 27 descriptors

for immune diseases out of the 4663 listed diseases. In this study, we

only present six (of 27) immune diseases: rheumatoid arthritis,

asthma, HIV infection, Crohn’s disease, multiple sclerosis and in-

flammatory bowel disease.

First, to construct the PPI backbone network, 16 593 genes and

244 767 interaction information were used to constitute the nodes

and edges, respectively. The interaction information was obtained

from PharmDB (Lee et al., 2015), a tripartite pharmacological net-

work database containing human diseases, drugs and proteins,

which compiles and integrates nine existing interaction databases

(see the second row in Table 1). The PPI network has a value of ‘1’

or ‘0,’ which indicates the presence or absence of a relation between

genes, respectively. Across the 27 immune diseases, 2420 genes were

known to be associated with at least one immune disease. This

amounts to approximately 15% of the genes included in the back-

bone network. Second, to build the disease-specific WGCNA net-

works, 186 gene expression datasets were collected from the GEO

database, which includes control and test groups. Among them, 98

datasets were available. For rheumatoid arthritis, 6 WGCNA net-

works were constructed, 15 for asthma, 4 for HIV infection, 2 for

Crohn’s disease, 17 for multiple sclerosis and 1 for inflammatory

bowel disease. The remaining 53 WGCNA networks were obtained

from 21 other immune diseases. Third, to validate the genes detected

by scoring, we examined previous studies. From the PubMed data-

base, 27 931 712 literatures were collected and searched for related

studies conducted by other researchers. Table 1 lists the details of

these data (Supplementary Table A1 in Appendix A shows the num-

ber of WGCNA networks for each immune disease).

3.2 Results of network construction for gene ranker
Changes in network density: Using the network selection and inte-

gration procedures described in Section 2.2, a final network was

constructed for each immune disease. Hereafter, the resulting net-

work is denoted as Gene Ranker (�), where the parentheses specify a

disease when required. The 98 WGCNA networks were selectively

added to the backbone network. For respective diseases, different

WGCNA networks were chosen. For rheumatoid arthritis, 28 net-

works were selected and incorporated into the backbone network.

One of the distinguishable merits of Gene Ranker is the increase in

network density. Individual WGCNA networks were sparse. If

WGCNA networks were only used, there may be disconnections be-

tween genes; hence, the application of machine learning algorithm

would not have been promising. Additionally, the density of Gene

Ranker was significantly increased. Figure 4 shows the densities of

Gene Rankers for the six diseases. For each disease panel, the black

outlined circles indicate the densities of the WGCNA networks

(ranging from 0 to 0.8%), while the dotted red lines indicate their

average. The number of outlined circles varies in the panel because

the number of selected WGCNA networks varies by disease. The

blue circle is the density of Gene Ranker. For rheumatoid arthritis,

the average density over 28 distinct WGCNA networks was

0.067%. However, the value increased to 1.431% in Gene Ranker

(Rheumatoid Arthritis), which was approximately 22 times denser

than the individual WGCNA networks. A similar improvement in

network density was observed for other diseases. Thus, Gene

Ranker could collect more information by holding a large number

of genes and the relations between them in the network.

Composition of member networks: We then examined the com-

position of member networks in Gene Ranker. Although Gene Ranker

is disease-specific, the member networks were not limited to their own

WGCNA networks, which were only designated for the disease.

Fig. 3. Pseudocode for Gene Ranker
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Given a disease, those WGCNA networks specific for the disease are

denoted as endogenous networks. In contrast, those that are not spe-

cific for the given disease are denoted as exogenous WGCNA net-

works. The pie chart in Figure 5 depicts the proportion of

endogenous and exogenous networks when a disease is specified.

The number in the inner circle of the pie represents the total number

of networks selected for Gene Ranker. The pies charts reveal a com-

mon pattern: if the endogenous WGCNA networks are not suffi-

cient, Gene Ranker compliments the vacancy of information from

the exogenous networks. If the endogenous WGCNA networks are

sufficient, Gene Ranker takes most of the information from its own

networks. For instance, in Gene Ranker (Rheumatoid Arthritis), five

of six networks were taken from its own WGCNA, while the

remaining 23 networks were selected from those of other diseases.

It was approximately 82% of its composition. On the contrary, for

Gene Ranker (Asthma), 67% of its members were chosen from the

endogenous WGCNA networks, while only 33% of its members

were chosen from the exogenous networks.

3.3 Performance results of gene ranker
The objective of Gene Ranker is to align genes in order of the

strength of their association with a given disease. The higher the

score that a gene gains, the closer its association with the disease.

Therefore, top-tier genes on the scoring curve were regarded as key

genes. To verify this, we performed a blind test. Some de facto genes

for a certain disease (known to be associated with the disease) were

assumed to be unknown. After gene scoring by Gene Ranker, we

tested how many de facto genes were highly ranked. In the experi-

ment, 10% of de facto genes were assumed to be unknown by set-

ting the labels as ‘0,’ and the labels of 90% of de facto genes were

set as ‘1.’ Note that there are very large numbers of unknown genes

(not by assumption), and their labels were set as ‘0’ by default. For

instance, in the case of rheumatoid arthritis, there were 351 de facto

genes. In the experiment, 316 genes were labeled (set as ‘1’) and 35

plus 16 242 were unlabeled (set as ‘0’). Ten sets of experiments per

disease were carried out in a similar manner for a 10-fold cross-

validation, and this procedure was repeated 10 times.

Figure 6 shows the effect of adding the WGCNA networks to the

backbone network. The figure shows the case of rheumatoid arth-

ritis. The AUC of the backbone network was 0.745. As the

WGCNA networks were added on the backbone network, the per-

formance gradually increased, reaching an AUC of 0.815. The red

dots indicate endogenous networks, while the black dots indicate ex-

ogenous networks. Notably, there was a sudden up-rise on the curve

when the first WGCNA network was added to the backbone net-

work. This indicates that the PPI network presents the overall ubi-

quity among genes on Gene Ranker, whereas the WGCNA

Table 1. Data description: sources for backbone network, add-on

networks, immune diseases, immune specific gene relations and

validation for studies

Backbone network

Genes 16 593 genes

Protein–protein interaction 244 767 relations

Sources: Entrez Gene, DIP, PharmDB, MINT and PharmGKB

Add-on network

Gene expression data 186 (WGCNA) datasets of 27

diseases

Source: GEO

Diseases

Immune diseases 27 diseases (in MeSH)

Arthritis, Juvenile Leukemia, Lymphocytic,

Chronic, B-Cell

Arthritis, Rheumatoid* Leukemia, T-Cell

Asthma* Lymphoma

Burkitt Lymphoma Lymphoma, B Cell

Colitis, Ulcerative Lymphoma, Follicular

Inflammatory Bowel Diseases* Lymphoma, T-Cell

Crohn’s Disease* Lymphoma, T-Cell, Peripheral

Dermatitis, Allergic Contact Common Variable

Immunodeficiency

Dermatitis, Atopic Multiple Myeloma

Diabetes Mellitus, Type 1 Multiple Sclerosis*

Glomerulonephritis, IGA Sjogren’s Syndrome

HIV Infections* Urticaria

Hypersensitivity Waldenstrom

Macroglobulinemia

Monoclonal Gammopathy of Undetermined Significance

Disease–gene relation 2420 genes across 27 diseases

Sources: MeSH, ChEMBL, DCDB, DrugBank, T3DB, TTD and CTD

Validations

Literatures/Studies 27 931 712 literatures of 27 dis-

eases and 16 593 proteins

Source: PubMed

(US National Library of Medicine National Institutes of Health)

Note: Diseases with superscripts are used for validation in this paper.

Fig. 4. Densities of networks: Gene Ranker versus WGCNA networks

Fig. 5. Composition of member networks of Gene Ranker
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networks add the peculiarity of disease-specific genes. Additionally,

note that the exogenous networks contribute to improving the per-

formance of Gene Ranker. This reserves a conjecture for an

extended study such that the immune diseases may be associated to

one another by sharing a common genetic information through gen-

etic interaction. It is notable that there are some studies in line with

our conjecture (Abou-Raya and Abou-Raya, 2006; Ermann and

Fathman, 2001; Gregersen and Olsson, 2009; Mariani, 2004).

Additional performance information for other diseases is provided

in Supplementary Figure B1 in the Appendix.

Figure 7 shows the comparative results of the overall perform-

ance of Gene Ranker. The x-axis represents diseases and the y-axis

indicates the AUC values. For a disease, the bundle of bars indicates

the performance of the PPI only network (gray bar), PPI plus en-

dogenous network (blue bar) and PPI plus endogenous and exogen-

ous networks (red bar).

The average AUC of the PPI network is 0.766 for the six diseases

shown in the figure. When adding disease-specific (endogenous)

WGCNA networks onto the PPI network, the performance was

increased by 5.61% (from 0.766 to 0.809). This value was further

increased when integration was conducted for the selected networks

from endogenous and exogenous networks. The highest AUC was

obtained from the last one. This amounts to an average 0.828 AUC.

The results can be interpreted as follows: the increase from the gray

bar to the blue bar can be explained as the endogenous WGCNA

networks enhancing Gene Ranker by adding disease-specific traits

onto the PPI network. In contrast, the increase from the blue bar to

red bar indicates that the exogenous networks from other diseases

may compliment Gene Ranker with common traits genetically

shared by immune diseases.

3.4 Implication and validation of gene ranker
To validate Gene Ranker, we performed gene scoring to six Gene

Rankers. All de facto genes for a disease were set as ‘1’ for the

labeled set, and the remaining genes were set as ‘0.’ For rheumatoid

arthritis, it has 351 de facto genes. After gene scoring by Gene

Ranker, the resulting gene scores and ranks were obtained. With the

scoring results, some genes were validated through retrieval and text

mining by reviewing nearly 27 million literatures in the PubMed

database.

The results in Figure 8 exemplify a typical output of Gene

Ranker (Rheumatoid Arthritis). In Figure 8a, the mesh grid presents

the subnetwork of genes in the case of rheumatoid arthritis. The

genes are laid on the grid in the xy plane, and the vertical axis indi-

cates the scores of the genes, i.e. the value of f in (2). Higher peaks

(in black) of scores were observed for known genes such as OTC,

B3GNT9 and C1orf167, among others. Most of the lower peaks (in

blue) were from unknown genes. Compared to genes on the floor,

these genes showed relatively huge potential to be key genes in

rheumatoid arthritis. Figure 8b shows the score curve for rheuma-

toid arthritis. In the figure, the solid line stands for the values of

gene score f of the top 500 ranked genes. The red circles on the line

correspond to the potential key genes. On the score curve, the

inserted genes (marked as red) between known genes are regarded as

strong candidate genes. Table 2 summarizes the ranking of de facto

genes and potential candidate genes. Some discovered genes were

validated by PubMed literature reviews, which are marked with a

superscript in the list. Below are some quotes from the literature.

Additional validation of diseases is provided in Supplementary

Appendix C.

• UCN3[a] and UCN2[c]: These data indicate the role of endogen-

ous CRF, UCNs and CRFR2 in the osteoarthritic and rheuma-

toid arthritis joint microenvironment (Pérez-Garcı́a et al., 2011).
• TIE1[b]: The present study shows that unique ASV derived from

receptors that play key roles in angiogenesis, namely, VEGF re-

ceptor type 1 and for the first time TIE1, can markedly reduce

the rheumatoid arthritis severity (Jin et al., 2008).

Fig. 7. Comparative result of overall performance of Gene Ranker

Fig. 6. Effect of adding WGCNA networks to the backbone network for

rheumatoid arthritis: Gene Ranker (Rheumatoid Arthritis) is constructed by

PPI plus 28 WGCNA across 15 diseases. The list of other diseases is shown in

the inner box
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• HTRA1[d]: This study offers new insights into the molecular

regulation of HTRA1 expression and its role in RA pathogenesis,

which may have significant impacts on clinical therapy for RA

and possibly other HTRA1-related diseases, including osteoarth-

ritis, age-related macular degeneration and cancer (Hou et al.,

2014).
• CD68[e]: CD68 expression was also associated with erosions and

radiological progression in rheumatoid arthritis (Salvador et al.,

2005).

4 Discussion

In this study, we developed an in silico method called Gene Ranker

for key gene identification in immune diseases. Immune and inflam-

matory diseases have a strong genetic component with Mendelian

patterns of inheritance (Gregersen and Olsson, 2009). Additionally, a

major concept of the underlying pathophysiology of autoimmune dis-

eases has been evaluated in genome-wide association scans, which

have identified a degree of genetic sharing among autoimmune dis-

eases such as rheumatoid arthritis and multiple sclerosis, among

others (Cotsapas and Hafler, 2013). Although the common features

of these diseases remain unclear, they are generally grouped in the im-

mune category (Mariani, 2004). Based on the potential commonality

among immune genes, we designed Gene Ranker. This algorithm was

initially constructed based on the network of protein interactions, and

then the patients’ gene expression networks were added onto the PPI

network. In the add-on process, disease-specific networks were

obtained from disease-wise WGCNA analyses of samples from

patients with a specific immune disease. The PPI network revealed the

overall ubiquity among genes, whereas the patients’ WGCNA net-

works added the peculiarities of the respective immune diseases.

However, any of these networks can be used in common in the cat-

egory of immune diseases, regardless of the given disease, if they pass

the screening procedure. Thus, the possibility of pan immune disease

genes was reflected. In the experiment, we demonstrated the superior-

ity of Gene Ranker, and the resulting genes (the highly ranked ones)

were validated through retrieval and text mining by reviewing nearly

27 million literatures in the PubMed database.

One advantage of Gene Ranker is that it can predict key genes even

when there are few known genes, which is the primary difficulty in evalu-

ating immune diseases. It is particularly advantageous for a new drug-

target discovery, which has not been thoroughly studied because of lack

of known facts about the disease–gene association. From a methodo-

logical perspective, Gene Ranker is scalable and evolvable, and can be in-

stantly and easily updated Gene Ranker with the most recent knowledge.

Some aspects of this study remain as future work. First, we

should further expand the scope of the study to other disease catego-

ries (i.e. not limited to immune diseases). Second, a more sophisti-

cated method is required when integrating networks to determine

the importance of individual networks.
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