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Abstract

Background: Recently, research on human disease network has succeeded and has become an aid in figuring out
the relationship between various diseases. In most disease networks, however, the relationship between diseases
has been simply represented as an association. This representation results in the difficulty of identifying prior
diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that
implements disease causality through text mining on biomedical literature.

Methods: To identify the causality between diseases, the proposed method includes two schemes: the first is the
lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on
lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength
of causality based on document and clause frequencies in the literature.

Results: We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a
causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases
were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and
quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed
higher correlation with associated diseases than the existing method.

Conclusions: This research has novelty in which the proposed method circumvents the limitations of time and
cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique
by defining the concepts of causality term strength.
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Background
Research on human diseases has been a major issue in
biology and medical fields. Research activities on these
subjects were carried out based on genetic, biological,
and epidemiological information [1–3] in the past, and
success in multi-omics approaches has shed light on re-
cent researches on human disease network. For instance,
the work of Goh et al. [4], which was regarded as an ini-
tiative work on human disease network, constructed a

disease network based on genes that are shared by two
diseases. On the other hand, Zhang et al. [5], defined
disease association using protein interaction. Lee et al. [6]
used metabolic pathway to relate two diseases by checking
if a disease-related gene exists in the same pathway. Fur-
ther, disease association in the network has been further
extended to clinical or medical information. Folino et al.
[7] and Hidalgo et al. [8] discovered disease association
from coexisting diseases in clinical records. On the other
hand, Zhou et al. [9] proposed a method that determines
disease association from shared symptoms. More research
on disease association can be found in [10] and [11].
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In the previous approaches, however, most disease net-
works have no direction. The limitation was mainly due
to lack of information that determines causal relation-
ship between diseases. Causal relationship of diseases
means that when one disease has occurred, other related
diseases could co-occur.
Disease causality can be used in many ways such as

preventing prior disease in advance or treating posterior
diseases once the prior one occurs. For example, when
hepatitis has occurred to a patient, liver cirrhosis and
hepatocellular carcinoma could occur, and the posterior
diseases can lead to death of the patient [12, 13]. If we
can determine the causal relationship of these diseases,
we can apply priority prevention of posterior disease and
choose an appropriate treatment method. Therefore,
determining not only the association between diseases
but also their causalities is very important. For finding
disease causalities, Bang et al. [14] proposed a causality
modeling by using various biomedical data including
gene/protein, clinical, metabolic pathway information
to construct a disease causality network.
The sources of disease causality can be obtained by ex-

periments or from clinical reports. In the experimental
approach, causality may be determined based on the shared
genes from prior–posterior diseases or influencing genes
along the metabolic pathways. However, because many
genes, pathways, and diseases can be present, we encounter
limitations in terms of time and cost in applying all possible
causalities in experiments. On the other hand, referencing
clinical reports to identify prior–posterior relationship be-
tween diseases entails violation of privacy. Most medical re-
cords are not open to the public. Therefore, one of the
methods of circumventing the difficulties presented above
is using biomedical literature officially open to the public.
Biomedical literature contains reports on experimental re-
sults and clinical comorbidity information on disease caus-
ality. Recent advances in text mining can save time and
effort when looking through a large amount of documents
and help us extract useful information that can be utilized

to define causal relationships between diseases. Earlier
works using text mining have been performed. Ananiadou
et al. [15] used text mining to extract gene or protein rela-
tionship information but only to extract the associations of
genes or proteins in the molecular biology level. Similar
works can also be found in [16–19]. In the clinical level,
many researches have been made using text mining
that attempt to find the shared phenotypes and symptoms
of diseases from documents. The readers are referred to
[9, 20, 21]. Furthermore, Xu et al. [22] searched disease-
disease risk relationships in the biomedical literature using
text mining approach.
In this paper, we propose a causal disease network,

which constructs disease causality through text mining
on biomedical literature. To provide causality between
diseases, the proposed method includes two schemes: the
first is the lexicon-based causality term strength, which
provides causal strength on variety of causality terms based
on lexicon analysis. The second is the frequency-based
causality strength, which determines the direction and
strength of the causality based on document and clause
frequencies in the literature. Figure 1 shows a schematic
description of evolution of a disease network that contains
information from association to causality. In particular,
causal disease networks can be laid on a variety of informa-
tion spectra depending on how finely the directional infor-
mation is reflected. Figure 1b shows that a simple causal
disease network displays only the prior–posterior relation-
ship of diseases. However, Fig. 1c shows that the edges of
the network represent the semantic strength of the causal-
ity terms based on lexicon analysis. Figure 1d shows that
the network reflects both the different strengths of the
causality terms and causal frequencies extracted from doc-
uments. In the proposed method, we first implement the
lexicon-based causality term strength to construct a causal
network, as shown in Fig. 1c. Then, we incorporate it into
the frequency-based causal strength. The resulting network
will then have the most advanced form in the spectrum of
causality network, as shown in Fig. 1d.

Fig. 1 Evolution of disease networks from association to causality: a Disease network with association only between the diseases. b Simple causal
disease network that shows the prior–posterior relationship of diseases. c Causal disease network that considers the semantic strength of
causality terms based on lexicon analysis. d Causal disease network that reflects the different strengths of causality terms and causal
frequencies extracted from documents
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Methods
In the proposed method, we define the concepts of caus-
ality term strength based on lexical semantics and define
the causality frequency based on biomedical literature to
discover the causal relationships between diseases, along
with their strength and directions.

Lexicon-based causality term strength
A hint on the causality between diseases can be found in
the clause of a sentence in text data. For example, the
clause “A causes B” in a sentence denotes causal relation-
ships between A and B. We define these clauses as causality
clauses. By searching for causality clauses that describe the
relationship of two diseases in biomedical literature, we can
extract prior and posterior diseases. More specifically, caus-
ality term strength refers to the strength of causal connota-
tion that a causality term exhibits in a causality clause. For
example, the term “causes” has larger causal connotation
than “tend to cause” in describing a relationship between
two diseases. This definition implies that the former
term has more reliability than the latter in deducing
causal relationships between the diseases.
Various types of causality terms exist, and their mean-

ings or degrees of strength differ. Figure 2 shows that the
directions of causal relationship of A and B are the same,
but the meaning of each term has a different degree of
causal strength.
Causality terms can derive their strength according to

semantic interpretation. Thus, the stronger the meaning
of causal relationship is, the larger is its weight value;
when only a simple relationship is indicated, the term
has a small weight value. Given a total of T causality
terms, αt gives a weight value for each term, where t∈T .
We denote αt as the lexicon-based causality term strength.
The weight values are determined through 32 surveys
from Anglophones and an advisory of a lexical-semantic
and lexicography expert. According to a four-point Likert
scale representing “simple relation,” “weak,” “strong,” and

“very strong,” αt has one of the values in L ¼ 1; 2; 3; 4f g
and is rescaled to be 0≤αt≤1 as follows:

αt ¼
argmax

l
f reqt lð Þ
Lj j ð1Þ

where

f reqt lð Þ ¼
XQ

i¼1
I i; lð Þ:

In (1), I a; bð Þ returns “1” if a ¼ b; otherwise, it is “0.”
Q is the number of surveys. This process applies the
major consensus on the Likert scale of those participants
who took part in the survey. Table 1 lists the lexicon-based
causality term strength (αt ) assigned to each of the 105
causality terms. The lexicon-based causality term strengths
are 33 (32 Anglophones and 1 linguist).

Frequency-based causality strength
The number of documents that phrases causality be-
tween diseases is important in determining the reliability
of causal relationships. If multiple documents exist that
describe the causality between diseases A and B while
only a single document exists that describes C and B, the
causal relationship of the former is more reliable than that
of the latter. Conventional document-frequency-based
methods refer to such aspects [23, 24]. The frequency-
based causality strength, however, should incorporate the
additional aspect of “how many times the causality terms
are also clause-wise present.” Thus, the causality fre-
quency discussed here includes calculating the weights of
the causality terms that not only considers the document
frequency but also incorporates repetition of the causality
clauses. Therefore, we propose the document-clause fre-
quency (DCF). DCF counts the occurrence frequency in
both the number of documents and the number of
clauses. However, even if the number of clauses shows the
same occurrence, cases exist when clauses come up from
one single document as well as from multiple documents.
With regard to which case is more reliable, the answer
would be the latter because occurrences in many docu-
ments prove causality, which provides more plausibility or
reliability than that from a single document occurring
multiple times. Equation (2) implements the idea. df ABt in-
dicates the number of documents that expresses the causal
relationship of A and B using causality term t, and cf ABt in-
dicates the number of clauses.

DCFAB
t ¼ df ABt ⋅logðcf ABt þ 1Þ ð2Þ

Figure 3a and b show cases where the clauses are the
same in terms of clause frequency but are different in
terms of document frequency. Compared with (a), (b) is
more plausible and reliable. Therefore, we assign more

Fig. 2 Causal relationship of A and B expressed in various terms
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confidence to case (b) in (2); the DCF values of (a) and
(b) are 0.7 and 2.8, respectively.

Causality weight and direction
Given two diseases, the causality weight and direction
are determined by combining the two causality strengths
introduced in the previous sections: the lexicon-based
causality term strength αt and the frequency-based caus-
ality strength DCF. Equation (3) shows the weight of the
causality between diseases A and B.

wAB ¼
X

t∈T
αABt ⋅DCFAB

t

� � ð3Þ

wAB shows the weight value of (A→B) when A causes
B. In the same manner, wBA can be calculated if the re-
verse condition coexists. Using wAB and wBA , the final
causal relationship is expressed as

αDCFC A;Bð Þ ¼ wAB−wBA: ð4Þ

When αDCFC > 0 , this condition implies that A is
more likely to cause B than the reverse case. The
amount of influence is quantified by the difference be-
tween wAB and wBA . A larger absolute value of αDCFC
indicates more confidence on the causality.

Results and discussion
Data
To validate the proposed method, we used the data
listed in Table 2, which include the sources of diseases,
causality terms, and literature. The list of diseases is col-
lected from Medical Subject Headings (MeSH) [25].
MeSH is a thesaurus database for medical areas specified
by the United States National Library of Medicine. From
the disease category, we collected 4663 diseases. The
number of possible pairwise combination among the
4663 diseases reaches 10,869,543, demanding a large
amount of time and calculations. To avoid the demand-
ing computational load, we utilized prevalence database
HuDiNe [26]. It is a database that shares 13,039,018 pa-
tient clinical records that include the number of people
who have diseases and comorbid diseases [8]. Referring
to HuDiNe, the most prevalent 195 diseases were se-
lected (See Additional file 1: Table S1). To calculate the
lexicon-based causality term strength, terms were ob-
tained from WordNet, which is an English vocabulary
database that includes synonyms and antonyms [27].
As described earlier, 105 causality terms were extracted.
To calculate the frequency-based causality strength,
6,617,833 abstracts were collected from PubMed, which
is a biomedical literature database. From the collected
abstracts, we extracted 43,248 documents that contained
195 disease names. Then, the documents were parsed into
504,123 sentences using the Stanford Parser [28].

Results of causal disease network construction
To demonstrate how the lexicon-based causality term
strength and the frequency-based causality strength are
applied to 195 selected diseases, we consider an exemplary
case of “Hepatitis C and Hepatocellular Carcinoma” and
explain the process using them. Hepatitis C is well
known to be the cause of liver cirrhosis and hepatocellular
carcinoma [12, 13]. In the collected literature data, the re-
lationship between two diseases is expressed using 16
causality terms. Among them, when causality term “cause”

Table 1 Causality terms and lexicon-based term strength

Causality Term αt Causality Term αt Causality Term αt
activate 1.00 effectuate 1.00 launch 0.75

activated by 0.75 effectuated by 1.00 launched by 0.75

actuate 1.00 elevate 0.75 lead 0.75

actuated by 1.00 elevated by 0.75 led by 0.75

affect 1.00 elicit 0.75 link 0.25

affected by 0.75 elicited by 0.75 made by 1.00

arisen from 0.75 enhance 0.75 make 1.00

arising from 0.75 enhanced by 0.75 originate 0.75

arouse 0.75 entail 0.50 originated by 0.75

associate with 0.25 entailed by 0.75 owe 0.75

attributable to 0.75 fire up 1.00 produce 1.00

attributed to 0.75 fired by 1.00 produced by 1.00

because of 1.00 generate 1.00 promote 0.75

began by 0.75 generated by 1.00 promoted by 0.75

begin 0.75 give birth to 1.00 provoke 0.75

bring 0.75 give rise to 1.00 provoked by 0.75

brought by 0.75 hasten 0.50 relate 0.25

call 0.75 hastened by 0.50 result 1.00

called out by 0.75 implied by 0.50 resulting from 1.00

cause 1.00 imply 0.50 rise 1.00

caused by 1.00 incite 0.75 secondary to 0.50

commence 0.50 incited by 0.75 set off 0.75

commenced by 0.50 induce 0.75 spark 1.00

complicate 0.50 induced by 0.75 sparked by 1.00

complicated by 0.50 infect 0.75 start 1.00

complication 0.50 infected by 1.00 started by 1.00

contribute 0.75 influence 0.75 stem from 1.00

contributed by 0.50 influenced by 0.75 stimulate 0.75

create 1.00 initiate 1.00 stimulated by 0.75

created by 1.00 initiated by 1.00 stir 0.75

develop 1.00 interact 0.25 stirred by 0.75

developed by 1.00 kick up 0.75 trigger 1.00

due to 1.00 kicked up by 0.75 triggered by 1.00

educe 0.75 kindle 0.75 unleash 1.00

educed by 0.75 kindled by 0.75 unleashed by 1.00
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is used, the clause “Hepatitis C virus causes hepatocellular
carcinoma” is extracted from the long sentence “Hepatitis
C virus is a hepatotropic RNA virus that causes acute and
chronic hepatitis, liver cirrhosis, and hepatocellular
carcinoma.”
Table 3 lists other cases that use different terms with

their document and clause frequencies. In this table, the
second column lists the lexicon-based causality term
strength ( αt ), and the third to fifth columns list the
document frequency, clause frequency, and DCF value,
respectively. Despite the occurrence of the same clause
frequency for the two causality terms “induce” and “in-
fect,” their DCF values are different due to the difference
in the document frequency. Most of the literature shows
Hepatitis C as a prior disease and Hepatocellular Carcin-
oma as a posterior disease. Using (3), we obtain weight
wAB ¼ 76:84 (where “A” is Hepatitis C and “B” is Hepa-
tocellular Carcinoma). However, some reports exist that
show the opposite case, resulting in wBA ¼ 8:63. Never-
theless, the final consequence is obtained by (4) with a
value of 68.21 in terms of αDCFC . This result implies
that the causality direction between the two diseases is
determined as “Hepatitis C as a prior disease and

Hepatocellular Carcinoma as a posterior disease” with a
causal strength of 68.21.
Using a similar process, we extracted 6275 docu-

ments and 6838 clauses from 43,248 documents and
discovered a causal relationship of 1011 pairs of 149
diseases (the full list of the disease causality pairs are
presented in Additional file 1: Table S2). The results
of identified disease causalities and codes are accessible in
http://www.alphaminers.net. Table 4 lists the top-10-
ranked αDCFC pairs. The disease pairs with high αDCFC
values are common cases of posterior diseases following
the occurrence of prior diseases.
Figure 4 shows a subset of the causal disease network

of 149 diseases. The subset was obtained, for easier
visualization, by selecting upper half of diseases for each

Fig. 3 a and b show the cases where the clauses are the same in terms of clause frequency but are different in terms of document frequency.
DCF puts a large value to (b): The DCF value of (a) is 0.7 and that of (b) is 2.8

Table 2 Data for diseases, causality terms, biomedical literature

Data Sources Number of Data

Diseases MeSH
The Medical Subject Headings
www.nlm.nih.gov/mesh/

195 out of 4663
diseases

HuDiNe
A site to explore the Human
Disease Network
www.hudine.neu.edu/

Causality Terms WordNet
A lexical database for English
www.wordnet.princeton.edu/

105 terms

Literature PubMed Literature
US National Library of
Medicine
National Institutes of Health
www.ncbi.nlm.nih.gov/pubmed

6,617,833 abstracts

Table 3 Causality terms and resulting values for causality
extraction between Hepatitis C and Hepatocellular Carcinoma

Causality Term α DF CF DCF α_DCF

affect 1.00 1 1 0.30 0.30

cause 1.00 26 27 37.63 37.63

contribute 0.75 1 1 0.30 0.23

develop 1.00 10 10 10.41 10.41

due to 1.00 8 8 7.63 7.63

educe 0.75 1 1 0.30 0.23

effect 1.00 3 3 1.81 1.81

induce 0.75 1 4 0.70 0.52

infect 0.75 4 4 2.80 2.10

lead to 0.75 10 10 10.41 7.81

link 0.25 1 1 0.30 0.08

relate 0.25 21 21 28.19 7.05

result 1.00 1 1 0.30 0.30

rise 1.00 1 1 0.30 0.30

secondary to 0.50 1 1 0.30 0.15

triggered by 1.00 1 1 0.30 0.30

αDCFC ¼ wAB � wBA ¼ 76:84� 8:63 ¼ 68:21
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category in terms of number of edges. In the network,
the nodes indicate diseases, and the direction and width
of the edge indicate the αDCFC value. The full network
of 149 diseases is presented in Additional file 1: Figure
S1. From the magnified portion of the network, we see
two pairs of prior and posterior diseases which are

(aneurysm → chemorrhage) and (cataract → blindness).
From sentences “However, in the case of Moyamoya
disease associated with an aneurysm, rupture of the
aneurysm should be considered to be a probable cause
of subarachnoid hemorrhage” (PMID: 7242821) and “A
case of large brainstem hemorrhage resulting from a
basilar artery aneurysm is reported” (PMID: 6474340),
we could extract that aneurysm causes hemorrhage.
Likewise, sentences “Cataract, as the main cause of
blindness, will require surgical relief, either in the
teaching hospital or preferably in the patient’s locality”
(PMID: 14566633) and “The prevalence of blindness
(visual acuity [VA] <3/60 in better eye) in 835 people
aged ≥ 40 was 1.3% (95% CI 0.5-2.1), of which 36.4%
was due to cataract” (PMID: 21780876) allowed us to
conclude that the cause of blindness as cataract.
For more enriched analysis, we compared the con-

structed causal disease network with results in [14]. In
[14], they define the causality by exploring the flow of
genes of associated metabolic pathways for pairs of dis-
eases. From many of co-identified pairs of causality, one

Table 4 Top-10-ranked causal disease pairs

Prior Disease Posterior Disease αDCFC

Aneurysm Hemorrhage 140.38

Glaucoma Blindness 125.23

Hepatitis C Liver Diseases 97.58

Thrombosis Infarction 73.78

Hepatitis C Carcinoma, Hepatocellular 68.21

Cataract Blindness 62.04

Pneumonia Meningitis 59.73

Aneurysm Subarachnoid Hemorrhage 58.17

Hepatitis B Carcinoma, Hepatocellular 54.74

Thrombosis Myocardial Infarction 45.48

Fig. 4 Causal disease network: In the causal disease network, each node denotes a disease, and the color of the node represents the MeSH
category. The size of the node is determined by the number of influencing diseases on the disease. The edge with an arrow shows the
prior–posterior relationship of two diseases, and its width represents the causality strength
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interesting but simple pair was (cataract → blindness).
The flow in metabolic pathway, Axon guidance, of cata-
ract progress through the metabolic pathway, MAPK
signaling pathway, of blindness. Thus, [14] extracts that
cataract causes blindness, which agree with the result of
the proposed method.

Result comparison with previous study
The proposed method for causal disease network is
compared with dRiskKB of [22]. dRiskKB considered
causality strength using semi-supervised iterative pattern
learning approach based on sentence frequency. Here,
higher sentence frequencies in corpus that indicate dis-
ease causality implies higher causality strength. However,
dRiskKB did not incorporate the concept of “causality
term strength” which refers to the strength of causal
connotation. By considering causality term strength, it
is possible to take into account for implicit meaning of
the terms, while the terms are treated with equal con-
notation if not considered. Comparison has been done
in two aspects of coverage and quality. The coverage
comparison aims to validate quantitative aspects such
as which method discovers more causalities among dis-
eases, whereas quality comparison aims to verify which

method finds more relevant causalities. Note that, for
convenience, we hereafter use αDCFC to indicate our
method.

Coverage comparison
The number of common diseases that the two methods
share was 125. For these diseases, dRiskKB extracted
351 causal relationships, whereas αDCFC found 956
causal relationships. Specifically, 276 causal relationships
found by αDCFC were common with dRiskKB. Further,
αDCFC found 680 more causalities [see Fig. 5a]. The
experimental results suggest that the proposed method
more efficiently extracted disease causalities than the
existing method. Technically speaking, it is superior to
dRiskKB by covering 2.7 times larger number of causalities.

Quality comparison
Identifying the relevance of disease causalities is indeed
difficult irrespective of what αDCFC or dRiskKB finds.
One of the methods to solve this difficulty may be to
compare the causality strength with the document fre-
quency, which could be justified because it raises more
confidence on the causality if many documents have re-
ported on the causal relationship of a certain pair of

Fig. 5 Experimental Results: a For 125 diseases, αDCFC extracted 2.7 times more causal relationship compared with dRiskKB, and covered 79% of
the existing causal relationships. b When the ranks of the causality strength are compared, the proposed method has a higher rank correlation
coefficient with the document frequency than that of dRiskKB; the document frequency represents the causal relationships. c Trend lines of the
causality strength of two methods show that αDCFC is more similar to the document frequency than dRiskKB
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diseases. The comparison is fair to αDCFC and dRiskKB
because both are frequency-based methods.
For the 43,248 documents of the 6,617,833 PubMed

abstracts, 454 pairs of 125 diseases were shared by
αDCFC and dRiskKB. Then, for these 454 causalities,
the values of the causality strength obtained by αDCFC
were calculated, and rank correlation with the document
frequency was calculated. This procedure was similarly
applied to dRiskKB.
Figure 5b shows the Spearman’s rank correlation coeffi-

cient. αDCFC shows correlation of 0.83, whereas dRiskKB
shows correlation of 0.79. The results show that the
causalities obtained by the proposed method provide
more relevance with respect to the document frequency.
Figure 5c visually depicts the results of quality comparison
for the causality strength values. Each bar represents
scaled values (between zero and one) of document fre-
quency and causality strengths for each pair. The trend
lines are calculated by polynomial curve fitting. In the fig-
ure, the trend line of αDCFC shows closer association with
the document frequency than that of dRiskKB. Table 5
lists the top 10 disease pairs sorted by document fre-
quency, which shows the ranks of the disease pairs. We
can see a closed association with the document frequency
from the causality strength of αDCFC.

Conclusions
In this paper, we have proposed two methods that extract
the causalities between diseases from biomedical litera-
ture, namely, lexicon-based causality term strength and
frequency-based causality strength. The former provides
the causal strength of a variety of causality terms based on
lexicon analysis, whereas the latter determines the direc-
tion and strength of causality based on DCF. The results
were illustrated as a disease network whose edges now
have directions showing prior and posterior diseases.

The novelty of the present research is described by the
following aspects. First, causal disease network incorpo-
rates relevant biological or clinical reports through text
mining. In effect, this process circumvents the limitations
of time and cost in applying all possible causalities in
biological experiments. To extract prior–posterior in-
formation from 6,617,833 abstracts, we proposed an
efficient text mining model. Second, in the methodo-
logical aspect, defining the concepts of causality term
strength based on lexical semantics and causality
frequency-based biomedical literature is a more ad-
vanced text mining technique compared with existing
models as the proposed method more finely reflects the
prior–posterior disease information. When the proposed
method was compared with previous research, namely,
dRiskKB [22], the proposed method showed outperform-
ing results; it determined 2.7 times more causalities and
showed higher correlation with associated diseases than
the existing method.
This research can exploit more extended research. First,

in the present research, we only used approximately 6
million literature of PubMed. However, if we use more
than 20 million of the whole literature, we would be able
to provide more generalized results that cover existing
documents. Second, we only applied the method to 195
diseases in the current research because of time limitation.
If we expand this method to all listed diseases in MeSH,
which covers approximately 4663 diseases, we can further
extend the disease causalities for wider range of diseases.
Third, decades may be needed to verify our experimental
results more thoroughly— observing patients for years to
see if they actually experience the projected disease causal-
ity. The other option for validation may be by comparing
our results from text literature with those obtained from
biological-level experiments, which will be our next
research.

Table 5 Comparison of causality strengths and ranks by the top-10 ranked pairs in the document frequency: The document
frequency and causality strengths of both αDCFC and dRiskKB have different range of values; so each value is scaled between
zero and one

Disease Causality Pairs Document Frequency αDCFC dRiskKB

Frequency Rank Causality Strength Rank Causality Strength Rank

Hepatitis C → Liver Diseases 1.00 1 0.70 3 0.20 12

Hepatitis B → Carcinoma, Hepatocellular 0.90 2 0.39 9 0.11 33

Aneurysm → Hemorrhage 0.76 3 1.00 1 1.00 1

Hepatitis C → Carcinoma, Hepatocellular 0.72 4 0.49 5 0.13 26

Thrombosis → Infarction 0.63 5 0.53 4 0.41 4

Hepatitis B → Liver Diseases 0.61 6 0.28 12 0.14 22

Rectal Neoplasms → Adenoma 0.61 6 0.01 164 0.05 59

Glaucoma → Blindness 0.59 8 0.89 2 0.08 45

Infarction → Heart Failure 0.47 9 0.23 14 0.22 11

Hemorrhage → Stroke 0.45 10 0.07 44 0.42 3
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Additional file

Additional file 1: Table S1. 195 Diseases. Table S2. Disease causality
pairs (1011 pairs). Figure S1. Causal disease network of 149 diseases.
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