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Abstract

Motivation: Understanding comorbidity is essential for disease prevention, treatment and prognosis. In particular,
insight into which pairs of diseases are likely or unlikely to co-occur may help elucidate the potential relationships
between complex diseases. Here, we introduce the use of an inter-disease interactivity network to discover/prioritize
comorbidities. Specifically, we determine disease associations by accounting for the direction of effects of genetic
components shared between diseases, and categorize those associations as synergistic or antagonistic. We further
develop a comorbidity scoring algorithm to predict whether diseases are more or less likely to co-occur in the pres-
ence of a given index disease. This algorithm can handle networks that incorporate relationships with opposite
signs.

Results: We finally investigate inter-disease associations among 427 phenotypes in UK Biobank PheWAS data and
predict the priority of comorbid diseases. The predicted comorbidities were verified using the UK Biobank inpatient
electronic health records. Our findings demonstrate that considering the interaction of phenotype associations
might be helpful in better predicting comorbidity.

Availability and implementation: The source code and data of this study are available at https://github.com/dokyoon
kimlab/DiseaseInteractiveNetwork.

Contact: wonhh@skku.edu or dokyoon.kim@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comorbidity describes when a given patient has one or more add-
itional medical conditions co-occurring alongside a primary disease
(Lee et al., 2008; Valderas et al., 2009). Predicting comorbidity is

important for planning the clinical care of individual patients and
for investigating clinical epidemiology; in particular, mortality risk
is often increased when patients with underlying diseases are also
diagnosed with adverse medical outcomes or complications (Cho
et al., 2021; Jørgensen et al., 2012; Nashiry et al., 2021).
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Comorbidity studies involving multiple phenotypes at the popula-
tion level can be divided into two categories according to the ap-
proach employed: (i) statistical analysis based on disease prevalence,
or (ii) network analysis based on sharing of components among dis-
eases. Notable studies using the statistical approach include
Buddeke et al. (2019), a cohort study based on clinical records that
presented complications with cardiovascular diseases (Buddeke
et al., 2019; Klimek et al. (2015), which used nationwide claim data
to identify diabetes-related comorbidities (Klimek et al., 2015); and
Richardson et al. (2020), which revealed conditions comorbid with
SARS-CoV-2 among 5700 hospitalized patients (Richardson et al.,
2020). Similarly, studies using network-based approaches and dis-
ease–disease associations include: Hidalgo et al. (2009), which built
comorbidity maps for 657 diseases from the clinical records of over
30 million patients, with connectivity defined by prevalence-based
comorbidity measures (Hidalgo et al., 2009; Rubio-Perez et al.
(2017), which explored potential comorbidity relationships by con-
structing a disease–disease network (DDN) based on shared disease-
associated genes and their functions (Rubio-Perez et al., 2017;
Verma et al. (2019), which similarly identified disease comorbidities
on the basis of shared genetic components by constructing a DDN
based on a phenome-wide association study (PheWAS) that used
electronic health record (EHR)-linked biobank data (Verma et al.,
2019; Dong et al., 2021), which discovered disease multimorbities
using hospital inpatient data in the UK Biobank and provided bio-
logical explanations by constructing disease network with a set of
genome-wide association studies (GWASs) data (Dong et al., 2021).

Separately, several studies have attempted to categorize comor-
bidity as being direct or inverse (Ibá~nez et al., 2014; Sánchez-Valle
et al., 2020; Tabarés-Seisdedos and Valderas, 2013; Tarantino et al.,
2018); i.e. given an underlying disease, conditions that frequently
co-occur at the population level are considered directly comorbid,
while those with relatively few co-occurrences have inversely comor-
bid. Catalá-López et al. discovered that Alzheimer’s disease can de-
crease the co-occurrence of cancers from meta-analysis with
literatures (Catalá-López et al., 2014). Roitmann et al. revealed in-
verse comorbidity relationships from clustering analysis with health
records in Demark (Roitmann et al., 2014).

DDNs represent a map of topologies between phenotypes having
shared biological components that may indicate phenotypic similar-
ity and comorbidity. Several DDNs were constructed to provide in-
sight into the human disease interactome by using genetic
components shared with diseases, such as genes, proteins, or path-
ways (Barabási et al., 2011; Goh et al., 2007; Liu et al., 2014; Zhou
et al., 2014). Other studies have used summary statistics obtained
from GWASs to observe disease–disease associations by leveraging
disease-associated single nucleotide polymorphisms (SNPs)
(Darabos et al., 2015; Dong et al., 2021; Nam et al., 2022; Verma
et al., 2019). However, these previous association-based DDN stud-
ies have not considered whether the associations or interactions that
depend on shared components are agonistic or antagonistic. As
shared genetic components can have different effects on different
disease mechanisms, incorporating this directional information can
improve the ability to predict comorbidity. For example, cardiovas-
cular diseases have a synergistic association with low-density lipo-
protein cholesterol (LDL-C) and an antagonistic association with
high-density lipoprotein cholesterol (HDL-C): high LDL-C may in-
crease the risk of cardiovascular disease, while high HDL-C may re-
duce it (Di Angelantonio et al., 2009; Sharrett et al., 2001). Insight
into which disease pairs are likely or unlikely to co-occur may help
in understanding the potential relationships of complex diseases.
Moreover, as our knowledge of biological mechanisms advances,
further genetic components of risk factors or protective factors
related to disease mechanisms are revealed (von Mutius and Smits,
2020; Zhu et al., 2018). Notably, Bulik-Sullivan et al. (2015) suc-
cessfully identified negative genetic correlations that agreed with
epidemiological associations (negatively correlated traits co-occur
less than expected by chance), and also identified phenotypic corre-
lations between complex traits and diseases via LD Hub and
PhenoSpD as a follow-up study (Bulik-Sullivan et al., 2015; Zheng
et al., 2017, 2018). They utilized linkage disequilibrium score

(LDSC) regression to estimate the strength of genetic correlations
between diseases by comparing association test statistics between
two diseases according to LD score trait in a polygenic model.
Therefore, LDSC-based methods effectively calculate genetic corre-
lations mainly for polygenic traits, using all variants regardless of
their statistical significance in GWAS (Bulik-Sullivan et al., 2015).
Because quantifying genetic correlations using LDSC regression
focused on the entire spectrum of variants in GWASs, it is hard to
directly apply their method to estimate disease interactions based on
knowledge-based shared genetic components (e.g. disease–gene
associations cataloged in the Online Mendelian Inheritance in Man
database) or data-driven shared components with statistical thresh-
olds (e.g. based on significant variants in genome-wide data).

The association-based DDNs that consider only the total amount
of shared components are not easy to determine whether the rela-
tionships between diseases are agonistic or antagonistic. In contrast,
the correlation-based DDNs computed by LDSC regression can de-
termine disease interactions but it may include more false-positive
disease associations in the resulting networks than those considering
only significant SNPs. This motivates us to explore interactions be-
tween diseases considering the direction of effect of shared genetic
components that reach genome-wide significance in PheWAS sum-
mary statistics and to study how inter-disease interactivity is related
at the epidemic and genomic levels.

Here, we propose a novel network-based framework to build an
inter-disease interaction network that can take into account the dir-
ection of effects for components shared between diseases. We con-
sider phenotypes as having either synergistic or antagonistic
association: synergistic if two diseases mutually increase the ten-
dency of their co-occurrence, or antagonistic if they decrease the ten-
dency of co-occurrence. To examine whether the interactivity of
disease associations can help predict/prioritize comorbidity, we con-
structed a DDN that considers the direction of effect of SNPs signifi-
cantly associated with diseases, obtained from PheWAS summary
statistics. This inter-disease interactivity network is a signed disease–
disease network (signed DDN) having both positive and negative
edges in the graph (i.e. positive values for a synergistic association
and negative for an antagonistic association). To translate synergis-
tic and antagonistic association at the genomic level to direct and in-
verse comorbidity at an epidemic level, we also develop a novel
graph-based semi-supervised learning (SSL) for comorbidity scoring,
modifying the objective functions of label propagation algorithms to
work for a signed DDN with a unary label by introducing a signed
degree matrix and signed graph Laplacian (Gallier, 2016). The scor-
ing algorithm prioritizes comorbid diseases in relation to an index
disease of interest.

2 Materials and methods

The overall procedure consists of three main parts (Fig. 1): (i) con-
structing the signed DDN based on shared genetic components, (ii)
predicting comorbidity scores using graph-based SSL and (iii) priori-
tizing/ranking comorbid conditions in relation to a given disease.

Fig. 1. Schematic description of the proposed method. (a) Defining directionality of

disease–SNP associations. D1 and D2 have a synergistic association because the

overall effects of their shared SNPs have consistent direction, whereas D2 and D3

have an antagonistic association because the effects of their shared SNPs have op-

posite direction. (b) DDN incorporating synergistic and antagonistic associations.

We constructed a signed DDN with pre-defined/pre-calculated disease associations.

(c) Prioritizing comorbidity. Higher scores mean higher chance of disease co-occur-

rence; D5 has the highest chance of comorbidity with D2
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First, we built a signed DDN based on the sharing of significant
SNPs between disease pairs, which relied on data obtained from UK
Biobank PheWAS summary statistics. We determined disease associ-

ations by accounting for the overall direction of effects of genetic
components shared between diseases, and categorize those associa-

tions as synergistic or antagonistic. In this network, two diseases
have a synergistic association if their shared SNPs have the overall
same direction of effect, or an antagonistic association if the SNP

effects are in opposition. For example, Disease 1 (D1) and Disease 2
(D2) have shared components in SNP1 and SNP2, whereas D2 and

D3 share SNP4 (Fig. 1a). Both SNP1 and SNP2 display the same dir-
ection of effect on D1 and on D2: SNP1 is associated with positive
direction of effects (increasing risk), while SNP2 is associated with

negative direction of effects (decreasing risk). Thus, the association
between D1 and D2 is synergistic. In contrast, D2 and D3 have an

antagonistic association because the respective effect of SNP4 is op-
posite (i.e. positive for D2 but negative for D3). Once the associa-
tions are determined, a signed DDN is constructed to represent the

relationships between phenotype pairs as a graph with nodes and
edges (Fig. 1b).

Second, we perform comorbidity score prediction: given a specif-
ic disease, we predict comorbidity of other diseases by applying
graph-based SSL to the constructed network (Lee et al., 2020; Nam

et al., 2019a,b). Since the network includes both synergistic and an-
tagonistic associations (edge weights with positive and negative val-

ues), we posited the following hypotheses concerning comorbidity
predictions: (i) two diseases have a chance of comorbidity if they are
connected (i.e. have at least one shared SNP), regardless of associ-

ation direction; (ii) if two diseases have a synergistic association
according to overall direction of shared SNPs, they are more likely

to co-occur (high chance of co-occurrence); and (iii) if two diseases
have an antagonistic association, they are less likely to co-occur
(low chance of co-occurrence). If these hypotheses are supported,

scoring algorithms can predict the comorbidity of another medical
condition given a specific underlying disease.

Finally, we prioritize the chance of disease co-occurrence based
on the predicted comorbidity scores, stratifying by deciles. All dis-
eases in a network have some chance of comorbidity with the index

disease, but the degree of association can range considerably; a rep-
resentative example is illustrated in Figure 1c. This ranking is then

validated using disease prevalence-based co-occurrence measures
estimated from EHRs (Hidalgo et al., 2009).

2.1 Constructing the DDN from PheWAS summary data
The proposed DDN was built with a shared genetic component
hypothesis, namely that two different phenotypes were linked if

they shared the significant SNPs from the PheWAS summary sta-
tistics. We obtained the beta-coefficient (bik) and standard error
(SEik) values for the association between phenotype i and SNP k
when that association passed the P-value threshold for signifi-
cance in summary statistics. Then, we selected an appropriate sig-
nificance threshold (P-value < 1� 10�4) and constructed a

disease–SNP association matrix: specifically, given m phenotypes
and k SNPs, we constructed the association matrix R 2 R

m�k

(Fig. 2a). For each SNP k associated with disease i, the element
rik ¼ bik=SEik is a constant value of z-score consisting of the corre-
sponding beta-coefficient divided by the standard error. The sign

of rik indicates the direction of effect of SNP k in relation to dis-
ease i. The DDN was then constructed from this matrix to repre-

sent the genetic associations between pairs of phenotypes by
measuring proximity between disease-SNP vectors.

This DDN is an undirected, signed and weighted graph G ¼
V ;Wð Þ in which V ¼ vi 2 R

k
� �� i ¼ 1; 2; :; mg denotes the set of

diseases and W ¼ wijf j i; j ¼ 1; 2 . . . ;mg denotes the similarity be-

tween diseases. Each disease vi ¼ fri1; ri2; . . . ; rikg has k-dimension-
al SNP vectors, and the similarity wij between any two diseases vi

and vj is calculated as follows:

wij ¼
P

k2SðrikÞ � ðrjkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 r2

ik

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 r2

jk

q

¼
P

k2S bik=SEikð Þ � bjk=SEjk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 ðbik=SEikÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 ðbik=SEikÞ2
q ; (1)

where rik and rjk are the respective z-scores associated with SNP k
for diseases vi and vj; K is the total number of SNPs; and S is the set

of significant SNPs shared between vi and vj. Since the z-score ri can
take a negative value, each edge weight wij can range from �1 to 1.
Figure 2a illustrates the constructed disease similarity matrix (W)

with both positive and negative associations. The magnitude of a
weight ( wijj j) between a disease pair describes the number of signifi-
cant SNPs those diseases share. A synergistic association (wij > 0)

means that two diseases have shared SNPs and the overall effect of
those SNPs has the same direction for both diseases. An antagonistic

association (wij < 0) indicates that the shared SNPs have overall
opposite directions of effect for the two diseases. The similarity ma-
trix can quantify how similar two diseases are in terms of the direc-

tions of SNP effects.

2.2 Network-based comorbidity scoring algorithms
Once the DDN incorporating synergistic and antagonistic associa-

tions (signed DDN) was constructed, comorbidity scoring was per-
formed using a graph-based SSL, which is employed for scoring

algorithms (Chong et al., 2020; Subramanya and Talukdar, 2014).
Figure 2b describes the problem setup for predicting comorbidity
scores. The network-based scoring algorithm used here is a trans-

ductive learning approach (Chong et al., 2020); it predicts the co-
occurrences between an underlying disease and other diseases when
only the underlying disease is known to occur (one positive sample),

and all others have unknown occurrences (unlabeled samples).
Those scores can provide prioritized comorbidity scores for the un-

labeled diseases by propagating with disease associations from the
signed DDN. The proposed network simultaneously contains both
positive and negative edges, obtained from (1); i.e. two diseases hav-

ing SNPs in common can co-occur regardless of the respective direc-
tionality of SNP effects. Nevertheless, the chance of co-occurrence

for two synergistically associated diseases may be relatively higher
than that of two diseases having an antagonistic association, since
the former pair shares many SNPs with the same direction of effect

while the latter features SNPs with opposite directions of effect.
The following describes the procedure of comorbidity scoring.

Consider a signed DDN G ¼ ðV ;WÞ, where the similarity matrix W

has both positive and negative edge weights. Let y ¼ y1; . . . ; ymð ÞT

denotes the initial labels for the set of diseases and f ¼
f1; . . . ; fmð ÞT the set of predicted comorbidity scores. We set a

unary label (yl ¼ þ1) for an index disease of interest (vl) and set
unlabeled (y yl ¼ f0gÞ for remaining other diseases. Label informa-

tion on the labeled disease is propagated to unlabeled diseases on

graph G to obtain real-valued scores f , with two assumptions: the

smoothness condition (predicted scores fi should not be too different

from the fj values in adjacent unlabeled nodes) and the loss

condition (predicted scores fi should be close to the given label of

yi). Generally, for an unsigned graph, G
�
¼ ðV ;W

�
Þ, the smoothness

condition is represented as

f TLf ¼
X

i�j
w
�

ij fi � fj

� �2
; (2)

where the graph Laplacian L is defined as L ¼ D�W
�

, W
�

being the
unsigned similarity matrix, D ¼ diagðdiÞ the degree matrix and
di ¼

P
jwij. However, since the proposed network has signed edges

from (1), we modified the smoothness condition of (2) to handle
both positive and negative associations by incorporating a signed
degree matrix:

Comorbidity prediction with inter-disease interactivity network 3
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f T L
�

f ¼
X

i�j
wijj j fi � signðwijÞfj

� �2
; (3)

where L is the signed graph Laplacian, defined as L ¼ D �W , in

which D ¼ diagðdi Þ is the signed degree matrix with di
� ¼

P
j wijj j

and signð�Þ is the signum function. The signed graph Laplacian L is

positive semidefinite, and the quantity of f TLf is non-negative

(Gallier, 2016). The loss condition is f � yð ÞT f � yð Þ ¼
P

i fi � yið Þ2.

The predicted output f is obtained by minimizing the following
quadratic function using the loss and smoothness conditions:

min
f

f � yð ÞTðf � yÞ þ lf T L
�

f : (4)

The closed form solution is obtained as

f ¼ I þ l L
�� ��1

y; (5)

where the hyper-parameter l trades off loss and smoothness. The
resulting predicted outcome f on unlabeled nodes has either positive

or negative values. We denote the predicted comorbidity scores f as
the DDN-driven comorbidity, which indicates the relative likelihood

of two diseases co-occurring based on the direction of effects of gen-
etically associated factors.

2.3 Prioritizing and categorizing comorbidity
We prioritize and categorize the list of co-occurring diseases as hav-

ing higher or lower chance of co-occurrence. Hereafter, we denote
the higher chance of comorbidity as direct comorbidity and the

lower chance as inverse comorbidity (Catalá-López et al., 2014;

Tabarés-Seisdedos and Baudot, 2016). We categorize DDN-driven
comorbidity f into direct and inverse comorbidity. For validating
DDN-driven comorbidity, we used co-occurrence measures esti-
mated from EHR (denoted as EHR-driven comorbidity). EHR-
driven comorbidity is defined in terms of the disease prevalence-
based /-correlation and relative risk (Hidalgo et al., 2009).

The Pearson correlations for binary variables (/-correlation) and
relative risk were used to estimate EHR-driven comorbidity
(Fig. 2c). Given N patients and the list of m diagnoses in clinical

records, we constructed a (m2�m
2 ) binary contingency matrix for each

disease pair to display the frequency distribution. The /-correlation

for the pair of diseases i and j is calculated by /ij ¼
CijN�PiPjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PiPjðN�PiÞðN�PjÞ
p

based on their prevalence, where Cij is the number of patients diag-

nosed with both diseases while Pi and Pj indicate the number of

patients diagnosed with disease i and j, respectively. A positive cor-
relation means two diseases tend to occur simultaneously and a
negative correlation that they tend not to co-occur. We also cap-
tured tendency of co-occurrence among disease pairs by calculating

relative risks. The relative risk for two diseases RRij ¼ CijN
PiPj

is meas-

ured as the ratio of risk between the diseases based on the disease
prevalence. RRij > 1 indicates that both diseases co-occur more fre-

quently than expected by chance, and RRij < 1 indicates their less

frequent co-occurrence than expected by chance (Hidalgo et al.,
2009; Sánchez-Valle et al., 2020). A disease pair i and j was defined
as having EHR-driven comorbidity when both measures indicated a
tendency to co-occur (/ij > 0 and RRij > 1).

Taking as ground truths the corresponding EHR-driven comor-
bidity, DDN-driven comorbidity scores f from Equation (5) for each
unlabeled disease can be decomposed into fþ and f� based on a

Fig. 2. Step-by-step explanation of the proposed method. (a) Visualization of disease–SNPs associations in PheWAS summary data. The positive/negative direction of effect of

SNPs (dashed line) depicts the direction of beta-coefficients obtained from summary statistics. (b) Constructing inter-disease interactive network (signed DDN) with determin-

ing synergistic and antagonistic associations. (c) Semantic description of proposed comorbidity scoring algorithm with graph-based SSL. (d) Comparison scheme with predicted

DDN-driven comorbidity and EHR-driven comorbidity. Based on this explanation, we provide pseudocode in Supplementary Algorithm S1
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threshold value. Suppose that ŷ ¼ ŷ1; . . . ; ŷmð ÞT is the ground
truths, then ŷi can take a value of ‘þ1’ if disease i is defined as hav-
ing EHR-driven comorbidity, and ‘�1’ otherwise. Then, the receiver
operating characteristic (ROC) curve was analyzed to determine a
threshold value J for deciding the labels on f . Youden’s J statistic
was used for a threshold value where the maximum value of
J ¼ sensitivityþ specificity� 1, as in a ROC curve (Schisterman
et al., 2005). We categorized diseases as having DDN-driven direct
comorbidity (high chance of co-occurrence) when fþ ¼ fif j fi �
J; for 8ig and DDN-driven inverse comorbidity (low chance of
co-occurrence) when f� ¼ fif j fi < J; for 8ig.

3 Results

3.1 Data processing for network construction and

validation
Disease–SNP associations were generated from UK Biobank
PheWAS summary statistics based on EHR-derived broad pheno-
type codes (PheCode) (Wei et al., 2017; Wu et al., 2019). The
PheWAS summary statistics were obtained from https://www.lee
labsg.org/resources, and include 1403 phenotypes (Zhou et al.,
2018), of which 976 were excluded in this study due to having a
relatively low number of cases (<1000) or representing injuries and
poisonings, symptoms, or sex-specific disease. Ultimately, network
construction and comorbidity prediction were performed on 427
diseases belonging to 14 phenotype categories (Fig. 3). Pre-
processing of the PheWAS summary results was performed using the
following steps: (i) 588 711 independent SNPs were selected by link-
age disequilibrium pruning with a threshold (window size: 50 kb,
step size: 5 kb, and r2 threshold: 0.5), and (ii) SNPs with association
P-value < 1�10�4 were selected, yielding 39 382 SNPs for analysis.
Disease–SNP associations were represented as a (427�39 382)-di-
mensional matrix in which the association of each element pair was
represented by a z-score. This matrix was then used to construct a
DDN with signed associations using Equation (1).

EHR-driven comorbidity information was collected and gener-
ated from the UK Biobank hospital episode statistic database.
Disease diagnoses for 502 505 UK Biobank participants are repre-
sented by ICD-9 and ICD-10 codes, which were mapped to
PheCodes by referring to PheCode Map versions 1.2 and 1.2b1
(https://phewascatalog.org/). A patient–phenotype matrix was con-
structed with binary values indicating the diagnosis status of each
participant for 427 diseases to calculate /-correlation and relative
risk. More details about the UK Biobank PheWAS results are pro-
vided in Supplementary Text S1, and the phenotypes used in this
analysis are listed in Supplementary Data S1.

3.2 Construction of the inter-disease interactivity net-

work (signed DDN)
The resulting inter-disease interactivity network (Fig. 3a) consisted
of 427 phenotypes (nodes) and 9223 total associations (edges), of
which 6209 were synergistic (67%; red) and 3014 antagonistic
(33%; blue) (Fig. 3c and Supplementary Figs S1 and S2). We exam-
ined the distribution of associations across the 14 phenotype catego-
ries (Fig. 3b), and found connections between diseases within a
phenotype category to typically be synergistic. Namely, diseases
belonging to a given phenotype category often had consistent effect
directions for their shared SNPs, which means that the chance of
their co-occurrence may be higher. One feature of signed DDNs is
the ability to observe genetic associations between diseases as the
direction of effect of shared SNPs. Our signed DDN was constructed
while taking into account both the total amount and direction of
shared SNPs. The greater the number of shared SNPs, the stronger
the association between two diseases; likewise, the more homogen-
ous the direction of effect, the stronger the synergistic association.
We examined the composition of synergistic/antagonistic associa-
tions in our signed DDN. Of the 427 diseases in the network, 364
feature both associations, 57 have only synergistic associations, 3
have only antagonistic associations and, remaining 3 diseases have

no associations (Supplementary Data S2, https://hdpm.biomedinfo
lab.com/ddn/signedDDN). To investigate a deeper biological inter-
pretations of the network, we described the composition of pheno-

types and interactions in signed DDN for coronary atherosclerosis
(PheCode: 411.4) as case example (Supplementary Text S2). For ex-
ample, Coronary atherosclerosis and type 2 diabetes (PheCode:
250.2) shared 66 SNPs, of which 55 SNPs were associated with posi-

tive direction of effects and 11 with negative direction of effects in
relation to both diseases. By calculating the overall direction of
effects (similarity¼ 0.29), coronary atherosclerosis and type 2 dia-

betes were determined to have a synergistic association.

3.3 Comparison of comorbidity prediction performance
The objective of network-based comorbidity scoring algorithms

using a signed DDN is to predict whether other diseases are more or
less likely to co-occur when one disease occurs. We hypothesized
that the direction of effects of shared SNP is informative in predict-

ing comorbidity and in prioritizing disease co-occurrence. Namely,
higher scores indicate greater sharing of SNPs and more consistent
direction of SNP effects; thus, diseases having stronger synergistic
association with a given index disease have higher predicted

Fig. 3. Visualization of an inter-disease interactivity network (signed DDN). (a) A

signed DDN with 427 phenotypes. Nodes represent diseases, and edges represent

the shared SNP associations between pairs of diseases. Node color indicates pheno-

type category, and size the degree of connections. Each line indicates either synergis-

tic (positive values, Supplementary Fig. S1) or antagonistic (negative values,

Supplementary Fig. S2) associations between nodes. Supplementary Figure S3 shows

heatmap for signed DDN (b) distribution of disease associations among the 14

phenotype categories. Upper and lower diagonal elements, respectively, depict the

numbers of positive and negative associations across different categories. The main

diagonal represents associations among diseases belonging to the same phenotype

category. (c) Summarized information on the data used for constructing the signed

DDN
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comorbidity scores. To test this hypothesis, we compared prediction
performance between the proposed method (signed DDN) and the
baseline method (unsigned DDN). The unsigned DDN was con-
structed as in previous studies (Goh et al., 2007; Nam et al., 2019a;
Verma et al., 2019), with only the number of shared genetic compo-
nents being considered. The difference between signed and unsigned
DDNs is explained in Supplementary Figure S4. A transductive ap-
proach was used, in which only one set of experiments was carried
per disease. EHR-driven comorbidity was used for ground truths.
Prediction performance was evaluated in terms of the area under the
receiver operating characteristics curve (AUC) and Spearman rank
correlation (q) (Fawcett, 2006; Yule, 1919). Both AUC and rank
correlation for an index disease of interest were obtained by com-
paring the predicted DDN-driven comorbidity scores and EHR-
driven comorbidity scores (Supplementary Fig. S5).

Comparison of prediction performance between the signed and
unsigned DDNs revealed that the interaction of the association be-
tween phenotypes can be helpful in predicting comorbidity (Fig. 4).
The AUC distribution of the 427 phenotypes in the signed DDN was
shifted higher relative to that of the unsigned DDN (Fig. 4a).
Moreover, the signed DDN demonstrated superior performance,
achieving an average of 0.601 (versus 0.573 with the unsigned
DDN) and with values generally falling above the diagonal when
plotted against corresponding unsigned scores (Fig. 4b). In the same
manner, we compared Spearman rank correlation coefficients be-
tween the two DDNs (Fig. 4c). In the signed DDN, 341 diseases had
positive correlations (above zero on y-axis, Fig. 4c), of which 259
exhibited significant correlations (0.103–0.556, P-value < 0.05). In
the unsigned DDN, 163 diseases had positive correlations (above
zero on x-axis, Fig. 4c), of which 53 were statistically significant
(0.105–0.290, P-value < 0.05). Only five diseases statistically sig-
nificant in the unsigned DDN achieved higher positive correlation
coefficients than were determined with the signed DDN. Thus, dir-
ect comparison of DDN-comorbidity score and prevalence-based
relative risk indicates that taking into account the direction of effect
of shared SNPs could better predict disease comorbidity. Notably,

when not considering direction of effect, only weakly positive or
non-significant correlations were obtained between prevalence-
based relative risk and predicted scores. Both AUCs and Spearman
rank correlation coefficients can be interpreted as the explanatory
power of comorbidity predictions for index diseases. Performance
measurement can be affected by the statistical power of PheWAS for
each disease, but they are affected more greatly by the structure of
the network because they are the predicted result through a scoring
algorithm. Thus, an index disease with a high AUC means that dis-
ease associations explained by genetic information can be inter-
preted as comorbidity relationships in epidemiology.

3.4 Interpretation of the correlation coefficient in

signed/unsigned DDNs
We further investigated the top 15 diseases with significant rank cor-
relations (marked as red in Fig. 4c). DDN-comorbidity scores for
these diseases in the signed DDN were highly correlated with
prevalence-based relative risk (q>0.5 with P-value < 0.05), where-
as those in the unsigned DDN were relatively low (0 < q<0.3).
Overall, the top 15 included 11 circulatory-related diseases that had
high positive correlation coefficients in the signed DDN (Fig. 5a).
Four diseases with highly significant correlations in the signed DDN
did not achieve significance in the unsigned DDN (superscript in P-
value, Fig. 5a). It can be inferred that considering SNP direction of
effect and its commonality between diseases is capable of capturing
complex disease associations that might not be identified when only
considering sharing of SNPs.

In this approach, synergistically associated diseases directly con-
nected to the index disease are likely to have the highest predicted
scores. Consequently, we examined which diseases had direct con-
nections when taking each of the 15 top diseases as the index disease
(Fig. 5b). The results showed all diseases with high correlation coef-
ficients to have relatively high ratios of synergistic association. In
addition, we found that comorbidity scores derived from the signed
DDN were highly correlated with EHR-driven comorbidity, even
for diseases having many antagonistic associations, such as hyper-
cholesterolemia, disorders of lipoid metabolism, myocardial infarc-
tion and coronary atherosclerosis. This further supports that
considering the direction of effects is helpful when using PheWAS
data to analyze the complex relationships between diseases, as the
latent associations between diseases (synergistic/antagonistic associ-
ation) provide important information for comorbidity prediction.

3.5 Clinical implication of comorbidity scoring based on

the signed DDN
We demonstrated how to predict disease comorbidity by applying a
graph-based SSL for signed graph to a signed DDN encompassing
427 diseases. To provide a case study illustrating the proposed
method and its interpretation, coronary atherosclerosis was selected
from among the top 15 diseases having significant rank correlations
in the signed DDN. Coronary atherosclerosis is a frequent cause of
coronary artery disease, a common chronic condition for which dis-
ease risk is characterized by a substantial and complex polygenic
contribution, with heritability between 40% and 60% (Fischer
et al., 2005; Marenberg et al., 1994; McPherson and Tybjaerg-
Hansen, 2016). We provided the comorbidity scores for a list of dir-
ect comorbidity diseases (Table 1), and the comorbidity score curve
obtained from Equation (5) (Fig. 6a). To suggest the practical use of
comorbidity scores, we divided the scores into deciles and catego-
rized accordingly, ranging from high risk of comorbidity (direct
comorbidity) to low risk of comorbidity (inverse comorbidity). We
decided the Tier-1 diseases as direct comorbidity group and Tier-10
diseases as inverse comorbidity group according to their ranking of
predicted scores. The remaining diseases between Tier-2 and Tier-9
were relatively lower co-occurrence than Tier-1 or higher co-
occurrence than Tier-10.

We examined the sub-networks for diseases (Fig. 6b) having high
risk of co-occurrence (Tier-1) and those having low risk of co-
occurrence (Tier-10). All Tier-1 diseases were synergistically associ-
ated with coronary atherosclerosis and also with each other, which

Fig. 4. Improvement of performance with the proposed signed DDN in comparison

to an unsigned network. (a) Histogram of AUC values for the signed and unsigned

DDNs. AUC values are binned along the x-axis. The bars depict the disease fre-

quency in each bin for both networks. The histogram is shifted towards right for the

signed DDN. (b) Plot of signed DDN AUC against that of the unsigned DDN. The

y- and x-axis indicate AUC values for the signed and unsigned networks, respective-

ly. Each circle indicates a set of experiments for one disease. (c) Comparison of

Spearman rank correlations. Spearman rank correlations indicate ordinal associa-

tions between rankings of DDN-comorbidity scores (f) and rankings of EHR-driven

relative risks
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means that high-ranked diseases overall have shared SNPs with con-
sistent direction of effect. In contrast, within the Tier-10 group, all
diseases directly connected with coronary atherosclerosis had antag-
onistic associations and the predicted scores were negative. In Tier-
10 group, macular degeneration (PheCode: 362.29) was antagonis-
tically associated with coronary atherosclerosis and the predicted
comorbidity was inverse. The scoring algorithm with the signed
DDN detected the known relationships that high levels of HDL-C
were associated with low risk of coronary artery disease and associ-
ated with high risk of age-related macular degeneration (Fan et al.,
2017). A sub-network consisting of all diseases directly connected
with coronary atherosclerosis is given in Supplementary Figure S6.
The top 20 diseases having direct comorbidity with coronary athero-
sclerosis are summarized in Table 1.

3.6 Criterion of leveraging disease–SNP associations in

summary statistics
We developed a signed DDN by leveraging the overall direction of
the effects of genetic components shared between diseases. We also
performed predictions of co-occurrence diseases given an index dis-
ease to examine whether the signed DDN can have more reliable ex-
planatory power for disease interactions. To propagate the seed

label information of index disease to the rest of the diseases in a net-
work through the scoring algorithm, we took a less stringent
genome-wide significance level (P-value < 1�10�4) for network
construction. However, depending on the arbitrary selection of sig-
nificance level, the underlying structure of the network can be
changed. The disease interactions are sparser at the most stringent
level and denser at the less stringent level. It is necessary to explore
which P-value threshold in the disease–SNP associations for defining
disease associations. We built another comparative DDN by per-
forming LDSC regression to investigate whether comorbidity predic-
tion results varied according to the number of SNPs in building a
network. We built the genetic correlation-based DDN (denoted as
LDSC-DDN) by performing LDSC regression with UK Biobank
PheWAS summary data to estimate the genetic correlations of 427
pairs used for the signed DDN (Bulik-Sullivan et al., 2015). The LD
scores were calculated from European samples in the 1000 Genomes
Project phase 3 database (Auton et al., 2015). We considered disease
pairs with positive and negative correlation values with significance
(P-value < 0.05). We took the correlation matrix as the similarity
matrix of the DDN and applied the proposed scoring algorithm to
predict comorbidity. The LDSC-DDN had a higher density value of
19.97% (18 165 edges across 427 nodes) than the signed DDN

Fig. 5. List of the top 15 diseases with significant rank correlations in the signed DDN. (a) Spearman rank correlation in the signed DDN against the unsigned DDN. Diseases

were sorted in descending order with respect to correlation coefficient in signed DDN. (b) Composition of directly connected diseases. Red bars indicate the number of

synergistic associations and blue bars the number of antagonistic associations among diseases directly connected with the given index disease. Four diseases with a superscript

in P-value were not statistically significant in the unsigned DDN
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(density of 10.14% as shown in Fig. 3c). We performed comorbidity
prediction tasks and calculated AUCs with the same experimental
settings as the signed network. Empirically, the dense network can
provide more accurate inferences than sparse network. However,
comorbidity prediction for 98 diseases could not be conducted
because they were disconnected from other diseases in the LDSC-

DDN. The LDSC results cannot be obtained when applied to data-
sets with low statistical power of GWAS (due to small sample size or
rare trait) for estimating heritability and genetic correlation. Most
connections in the LDSC-DDN were obtained from diseases with
high statistical power. The proposed signed DDN had advantage of
discovering inter-disease interactions by leveraging significantly
associated SNPs, even though the number of SNPs used for con-
structing network was smaller. The detailed results are provided in
Supplementary Text S3.

4 Discussion and conclusion

We proposed a novel signed DDN based on biobank-scale PheWAS
summary statistics that considers the direction of effect of shared
SNPs, and further presented the utility of this DDN in prioritizing
diseases according to comorbidity. To design this DDN, we meas-
ured the overall direction of effect of SNPs shared between pairs of
diseases, and further categorized disease–disease associations as syn-
ergistic or antagonistic depending on whether that overall direction
is consistent or opposite between diseases. Our results demonstrated
that considering the interaction and direction of shared components
is more helpful in predicting comorbidity and ranking comorbid dis-
eases than considering only the quantity of shared components.

We also developed a novel label propagation algorithm for
signed networks and applied it to show that the signed DDN not
only models disease relationships at the population level, but also is
applicable to comorbidity prediction in the context of personalized
medicine. The comorbidity scoring algorithm was designed such
that when the initial label on the index disease encounters a ‘disease
connected by a synergistic association’, the score is propagated with
a positive value (increasing the likelihood of co-occurrence), where-
as when it encounters a ‘disease connected by an antagonistic associ-
ation’, the score is propagated with a negative value (reducing the
likelihood of co-occurrence).

One advantage of the proposed method is that the signed DDN
can aid in the interpretation and comprehension of the intricate
associations among diseases, and moreover can be easily updated
and reinforced when new PheWAS results are obtained for a pheno-
type not yet included in the network. A second advantage is its abil-
ity to categorize diseases as having direct and inverse comorbidity
based on the defined synergistic/antagonistic associations. It is very

Table 1. The top 20 diseases having direct comorbidity with coronary atherosclerosis

Phenotypes (PheCode) Scores RR [95% CI] /-corr

Myocardial infarction (411.2) 1.000 13.052 [13.050, 13.054] 0.5564

Other chronic ischemic heart disease, unspecified (411.8) 0.993 11.636 [11.634, 11.637] 0.5521

Angina pectoris (411.3) 0.929 11.510 [11.508, 11.511] 0.5573

Unstable angina (411.1) 0.855 13.261 [13.256, 13.266] 0.3512

Cardiac congenital anomalies (747.1) 0.840 4.115 [4.000, 4.234] 0.0185

Cardiac and circulatory congenital anomalies (747)* 0.831 0.918 [0.344, 2.445] �0.0002

Congenital anomalies of great vessels (747.13) 0.827 8.758 [8.746, 8.770] 0.1439

Other cerebral degenerations (331) 0.811 2.432 [2.348, 2.519] 0.0100

Primary open angle glaucoma (365.11) 0.790 1.620 [1.601, 1.639] 0.0092

Open-angle glaucoma (365) 0.788 1.614 [1.595, 1.632] 0.0091

Delirium dementia and amnestic and other cognitive disorders (290) 0.777 3.311 [3.261, 3.361] 0.0211

Altered mental status (292.4) 0.756 2.880 [2.871, 2.889] 0.0400

Dizziness and giddiness (386.9) 0.738 3.114 [3.110, 3.119] 0.0624

Heart valve replaced (395.6) 0.734 9.291 [9.276, 9.306] 0.1371

Aortic valve disease (394.3) 0.729 7.573 [7.557, 7.590] 0.1042

Glaucoma (365) 0.724 1.882 [1.876, 1.888] 0.0234

Cerebral ischemia (433.3) 0.710 3.670 [3.650, 3.690] 0.0385

Occlusion and stenosis of precerebral arteries (433.1) 0.706 6.338 [6.316, 6.361] 0.0718

Vertiginous syndromes and other disorders of vestibular system (386) 0.684 2.008 [1.681, 2.400] 0.0034

Neurological disorders (292) 0.580 2.782 [2.741, 2.825] 0.0177

Note: An asterisk denotes a disease pair that were predicted as having direct comorbidity from DDN-driven comorbidity, but inverse comorbidity on the basis

of EHR-driven comorbidity (RR, relative risk; 95% CI, 95% confidence interval; corr, correlation).

Fig. 6. Comorbidity scoring curves and associations for coronary atherosclerosis. (a)

Comorbidity scoring curves for coronary atherosclerosis (PheCode: 411.4). The

solid line indicates DDN-driven comorbidity scores (f) of the other 426 diseases in

the dataset, sorted in descending order with respect to score on the x-axis. The

y-axis represents comorbidity scores, rescaled to values between �1 and 1. (b)

Sub-networks of diseases having high comorbidity (Tier-1) and low comorbidity

(Tier-10) with coronary atherosclerosis
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important to know both which conditions have higher chance of
co-occurrence (direct comorbidity) and which have lower chance of
co-occurrence (inverse comorbidity) for a given disease. Such cate-

gorized relationships enable clinicians to construct comorbidity
scenarios in advance, and can aid patient treatment planning. Our

study also used co-occurrence and disease prevalence information
obtained from UK Biobank hospitalization episodes to confirm and
validate the DDN-driven predictions of direct/inverse comorbidity.

Although omnidirectional validation has not been performed, our
findings support that a DDN based on the relations of diseases and

genetic components provides sufficient information for the
prioritization and categorization of disease comorbidity.

Some aspects of this study remain to be investigated in future
work. One of the primary limitations is that we utilized data from a
single cohort of the UK Biobank. Since the UK Biobank mainly

includes healthy participants, the constructed network might not
capture disease prevalence in populations of different demographic
characteristics. We also limited our analyses to those phenotypes

occurring in both sexes. Some significant genetic components might
vary by sex, and thus it is necessary to construct sex-specific signed

DDNs and determine sex-specific comorbidity. Although our strati-
fication of comorbidity groups is a product of a specific population,
the approach can be extended for use in precision medicine to screen

individuals at comorbidity risks.
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