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Abstract

Motivation: Recently, various approaches for diagnosing and treating dementia have received significant attention,
especially in identifying key genes that are crucial for dementia. If the mutations of such key genes could be tracked,
it would be possible to predict the time of onset of dementia and significantly aid in developing drugs to treat de-
mentia. However, gene finding involves tremendous cost, time and effort. To alleviate these problems, research on
utilizing computational biology to decrease the search space of candidate genes is actively conducted.

In this study, we propose a framework in which diseases, genes and single-nucleotide polymorphisms are repre-
sented by a layered network, and key genes are predicted by a machine learning algorithm. The algorithm utilizes a
network-based semi-supervised learning model that can be applied to layered data structures.

Results: The proposed method was applied to a dataset extracted from public databases related to diseases and
genes with data collected from 186 patients. A portion of key genes obtained using the proposed method was veri-
fied in silico through PubMed literature, and the remaining genes were left as possible candidate genes.

Availability and implementation: The code for the framework will be available at http:// www. alphaminers. net/ .

Contact: shin@ajou.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Developments in computational biology significantly decrease the tre-
mendous cost, time and effort required for existing biological experi-
ments. Computational biology enables further research in identifying
key genes involved in diseases (Nam et al., 2019; van Dam et al., 2018;
Venter et al., 2001). Key genes play a central role in diseases affected by
genetics and serve as a biomarker that can objectively measure the nor-
mal or pathological condition of a living organism and the degree of re-
sponse to drugs. Therefore, the determination of new disease-related
key genes can lead to developments in new diagnosis and treatment of
diseases. Diseases that can considerably benefit from key gene identifi-
cation include genetic diseases such as Huntington’s disease, down syn-
drome and hemophilia (Griffiths et al., 2005). Among the diseases,
dementia is considered a serious issue that is potentially more significant
given the pervasiveness and seriousness of dementia in an aging society.
Specifically, over 70% of the pathogenesis factors for Alzheimer disease
(AD) account for genetic effects and other classes of dementia such as
Lewy body dementia, frontotemporal dementia and cerebral autosomal
dominant arteriopathy with subcortical infarcts and leukoencephalop-
athy (CADASIL) are known to be affected by genetic factors (Loy et al.,
2014; Paulson and Igo, 2011). Therefore, research on identifying key
genes that cause dementia using computational biology is actively

conducted worldwide. If it is possible to track mutations of key genes,
this can greatly aid in the early prediction of the onset of dementia and
development of drugs for treating dementia. Representatively, the
e-type of Apolipoprotein E (ApoE) is a well-known key gene for AD
(Genin et al., 2011; Querfurth and LaFerla, 2010; Reitz and Mayeux,
2014). ApoE facilitates the cohesion or accumulation of amyloid b-pep-
tide (Ab) and regulates the structure and toxicity of Ab. In addition, nu-
merous genomic studies reported that various genes other than ApoE,
such as CLU, CR1, PICALM, BIN1 and SORL1, are related to AD and
research focuses on verifying the relationships (Lambert et al., 2013).
Clusterin (CLU) plays a similar role to ApoE in which it converts Ab
into an insoluble form or regulates toxicity, and complement receptor 1
(CR1) regulates the main receptors of complement C3b, which is
related to the removal of Ab (Carrasquillo et al., 2010; Lambert et al.,
2009). Phosphatidylinositol-binding clathrin assembly protein
(PICALM) contributes to synaptic dysfunction and affects amyloid pre-
cursor protein (APP) mechanism via the endocytic pathway (Harold
et al., 2009), and so on (Chapuis et al., 2013; Pottier et al., 2012;
Rogaeva et al., 2007). Hence, various genes are observed as associated
with dementia in a manner similar to ApoE.

To date, most genetic studies related to dementia were conducted
through genome-wide association studies (GWAS) by selecting spe-
cific single-nucleotide polymorphisms (SNPs) that exhibit
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singularities in the patient group and targeting genes that contain
selected SNPs. In GWAS, genotypes in SNPs between patient and
control groups were compared, and genes related to specific diseases
were discovered by mapping markers that are associated with a spe-
cific disease (Bush and Moore, 2012; Manolio, 2010). SNP is the
most common form of DNA sequence polymorphism due to the dif-
ference in single base-pair variation in DNA among individuals. It is
especially useful for high-throughput genotyping owing to its low
mutation rate, high incidence and stability between generations on
genomes. Therefore, it can be used as a marker for physical mapping
and genetic mapping in addition to receiving spotlights as a marker
for examining complex genetic traits.

However, in the case of GWAS that are generally performed, the in-
fluence of each SNP is confirmed through statistical analysis, which
leads to a limitation of not reflecting complex interactions that occur in
a living body. Although it is difficult to find a significant statistical dif-
ference between patient and control groups with individual SNPs, when
several SNPs are considered at once, there can be unexpected large bio-
logical effects (Levine et al., 2017; Liu et al., 2011, 2012). Additionally,
SNPs can interact with genes when considering multi-genomic levels.
SNPs appear at some locations in a gene and can affect the structure or
function of the gene. The presence/absence or mutation of a gene is
related to a disease, and thus it is appropriate to consider the SNP-gene-
disease relationship when identifying key genes of a disease. In sum-
mary, identification of key genes of a disease should consider interac-
tions at the SNP level (intra-relation) and also the association with the
disease through the interaction with genes that are situated at a higher
level (inter-relation).

In this study, we implement the concept of hierarchically struc-
tured networks that reflect the mutual systematic relationships of
various biological levels. More specifically, a layered network with
each consisting of SNPs, genes and diseases with intra-relation with-
in a layer and inter-relation between layers are included in the hier-
archically structured network. When dementia is set for the target
disease, the hierarchical structure of the network allows SNP infor-
mation in the gene network to emphasize specific genes that may
play a significant role in dementia. We define such genes as candi-
date key genes. To provide predictions of candidate key genes, a ma-
chine learning algorithm, hierarchical semi-supervised learning
(SSL) (Kim et al., 2019) is employed. SSL, which is crucial for the
proposed method, is a machine learning algorithm that is effective
for predictions when there is a paucity of information (Chapelle
et al., 2009; Zhu and Goldberg, 2009). Candidate key genes for AD
are suggested via the proposed framework.

2 Overview of the method

The proposed method consists of constructing a multi-layered net-
work with public and disease-specific data and predicting candidate
key genes that can affect dementia via a machine learning algorithm.
The process of comparing information of dementia patient group
with that of control group is necessary to identify key genes.
Furthermore, if it is possible, it is necessary to integrate and use vari-
ous levels of data generated from the genome. The proposed method
consists of two major steps to fulfill the requirements.

First, the disease network and gene network are constructed
from public data. For the disease network, diseases are connected by
calculating similarities between diseases. Similarly, genes in the gene
network are linked by computing similarity between genes. After
construction, both networks are connected by using disease–gene
relations and result in a layered network. The SNP network from de-
mentia patients is introduced to construct the dementia-specific
multi-layered network. SNPs obtained through GWAS between the
dementia patient group and control group are linked based on the
similarity between them on the network. The completed SNP net-
work is connected to the lower side of the constructed gene network.
For connecting gene and SNP networks, the relations between them
are used in which genes and specific SNPs that are included in the
gene are connected. On the completed three-layered network, a SSL
algorithm is applied to generate scores for candidate key genes of de-
mentia. Genes that are ranked on top of the list of scores are

recommended as candidate key genes. The scoring algorithm utilizes
network-based SSL, which considers a multi-layered structure in
prediction. Figure 1 shows a schematic description of the proposed
method. Detailed information on the proposed method is given in
the following sections.

3 Multi-layered network construction

Generally, a network (or a graph) is represented by G ¼ V;Eð Þ,
where nodes V represent data points (elements) and edges E represent
connections between nodes. The edges in the proposed method quan-
tify similarity or interaction between two different nodes. Each edge
weight, wij, ranges in 0 � wij � 1 and higher of its value reflects
higher degree of relation between two nodes i and j. In addition, a
multi-layered network is constructed to reflect the mutual and multi-
layered relations between SNP-gene-disease. In the multi-layered net-
work, there are two types of relations of intra-relation and inter-
relation in which the former represents an association between two
nodes within a layer and the latter represents the association between
two nodes in different layers. In this section, we explain methods to
construct intra-relations of separate networks of disease, gene and
SNP with inter-relations of disease–gene and gene–SNP.

3.1 Disease network
In the disease network, each node represents disease, and the edge rep-
resents the similarity between two diseases. Each edge weight wij in the
disease network is calculated based on the disease–gene (protein) rela-
tion. The disease–gene relation data exhibits a structure that describes
as to which diseases are related to which genes. The number of relations
is very low when compared to the number of diseases and genes, and
thus we employ cosine similarity (which is useful for this type of data)
to calculate the edge weight (Nam et al., 2019). For two diseases xi and
xj, the cosine similaritywij is calculated as follows:

wij ¼ xi � xj
xij jj j � xjj jj j

:

The calculated edge weights exhibit higher values for a higher
number of related genes shared by the two diseases, and this trans-
lates to values implying higher similarity between the two diseases.

3.2 Gene network
The STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) database (Szklarczyk et al., 2017) is employed to construct
a gene network. The STRING is a database that collects and integra-
tes every possible publicly available protein–protein interaction
(PPI) information. It scores the association between proteins
from 0 to 1 on the following sources of information: (i) conserved
neighborhood, (ii) gene fusions, (iii) phylogenetic co-occurrence,
(iv) co-expression, (v) experiment/biochemical data, (vi) annotated
pathways and (vii) literature co-occurrence. The association scores
between two genes calculated from various sources of information
are integrated as a combined score using the following equation:

S ¼ 1�
Y

i
1� sið Þ (1)

where si represents the association scores from each source of infor-
mation, and i denotes the number of information sources. The com-
bined score with Equation (1) ranges in 0 � S � 1 and higher
values imply higher association between two genes. Therefore, the
combined score between genes collected from the STRING database
is used as the edge weight for the gene network.

3.3 SNP network
An edge in the SNP network represents the interaction between
SNPs. To calculate the interaction, we employ one GWAS tool, epis-
tasis test in PLINK (Purcell et al., 2007). Epistasis test is performed
using the following logistic regression model that classifies case and
control groups based on allele dosage from each SNP, A and B
as follows:

i832 D.-G.Lee et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i831/6055939 by A-Jou U

niv / M
edical Info user on 08 M

ay 2025



log
Pr D ¼ 1jA;Bð Þ
Pr D ¼ 0jA;Bð Þ ¼ b0 þ b1Aþ b2Bþ b3ABþ e

where D represents the control group if it takes the value of 0 and

the case group if it takes 1. From the epistasis test, the interaction
between SNPs is computed based on the odds ratio from the fitted
model. More specifically, the test on interaction is based on the coef-

ficient b3 of the model. Hence, an epistasis test is conducted on every
pair of SNPs and only significant interactions are extracted. Note

that the test only considers allelic, and thus covariates cannot be
included. If the odds ratio from epistasis test has a value of 1, then it
implies that interaction is absent between two SNPs. When the value

deviates further from 1, it means that there is a stronger interaction
between the two SNPs. By reflecting this notion, the following trans-
formation function TðxÞ is applied to the odds ratio to convert the

value into similarity between SNPs, and the resulting value is used
as edge weights:

T xð Þ ¼ 2

1þ e�lnx
� 1

3.4 Inter-relations between networks
Disease, gene and SNP networks are separate single networks where

edges represent associations between nodes at the same level.
Meanwhile, inter-relations depict inter-layer relationships in which
associations between two nodes in different levels are represented.

The multi-layered network proposed in the study constructs inter-
relations based on information of SNPs belonging to specific genes

and genes affecting specific diseases. Inter-relation weights take bin-
ary values of 1 if a relation exists between two nodes and
0 otherwise.

4 Dementia-related key gene identification

From the constructed network, key genes for dementia are priori-
tized using a machine learning algorithm that considers the mutual

interactions between entities from different layers. To reflect this no-
tion, we employ a graph-based SSL algorithm (Tsuda et al., 2005;
Zhu et al., 2005).

4.1 Graph-based semi-supervised learning
Graph-based SSL constructs graphs by representing data as nodes
and similarity between nodes as edges and outputs predictive values
such that similar data points have similar predictive values. For a
total of n ð¼ l þ uÞ data points, it utilizes l number of labeled data
X1;Y1ð Þ; . . . ; Xl;Ylð Þ and u number of unlabeled data. In general,
SSL is effective when u � l (Chapelle et al., 2009). After network
construction, the graph-based SSL obtains the optimal solution for
the following quadratic problem:

min
f

f � yð ÞT f � yð Þ þ lf TLf

Here, y is set as, y ¼ y1; . . . ; yl; 0; . . . ; 0ð ÞT and the
predictive values are f ¼ f1; . . . ; fl; flþ1; . . . ; fn¼lþuð ÞT . The labels
for unlabeled nodes are initially set with y ¼ 0. In addition, L corre-
sponds to the graph Laplacian matrix defined as L ¼ D�W, where
D ¼ diagðdiÞ and di ¼

P
jwij. For graph-based SSL, the solution is

obtained that satisfies the following conditions: (i) output
for labeled nodes fi should be similar to the actual value yi and
(ii) output for unlabeled nodes fi should be similar to neighboring
nodes fj. l is a user-specific hyperparameter that controls the two
conditions. The SSL output is calculated using the following equa-
tion where I is a l þ uð Þ � ðl þ uÞ dimensional identity matrix:

f ¼ I þ lLð Þ�1y: (2)

4.2 Semi-supervised learning for multi-

layered networks
In general, a graph-based SSL algorithm is used for single networks.
The SNP-gene-disease network constructed in the study has three-
layered structure. Thus, we employ an SSL algorithm specialized
for a multi-layered structure (Kim et al., 2019). The layer-wise intra-
relation and inter-relation between layers of the proposed SNP-
gene-disease network is shown in Figure 2.

The problem of applying Equation (2) to this type of a huge ma-
trix can lead to intractability in calculation. A method proposed by
Kim et al. (2019) is employed to boil down high computational
complexity. To alleviate the problem, it first separates the huge ma-
trix W in Figure 2 into Wfintrag and Wfinterg, then obtains the exact
solution with Equation (2) for the intra part and approximate

Fig. 1. Schematic description of the proposed method. First, a multi-layered SNP-gene-disease network is constructed from public- and disease-specific data. Subsequently, SSL

for the hierarchical structure algorithm is applied with labels to score genes. Finally, candidate key genes are recommended based on the ranks of genes in which associations

with diseases are yet unknown
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solution for the inter part. Given the separation, the graph

Laplacian matrix L is represented as L intraf g þ
L interf g ¼ D intraf g �W intraf gþ

�
D interf g �W interf gÞ.

The final solution is obtained as follows:

f̂ ¼ A�1Y � A�1C
1

lb
QþCTA�1C

� ��1

CTA�1y (3)

where A ¼ I þ laL
fintrag with la and lb corresponding to the intra-

layer and inter-layer smoothing parameters, respectively. Matrices
Q and C are obtained with approximation on Lfinterg as follows:

Lfinterg�CQþCT

where C denotes the sampled column of Lfinterg and Q denotes the
intersection between C and the corresponding row. As more col-
umns are sampled, the approximated solution approaches closer to
the exact solution. Readers can refer to Kim et al. (2019) for more
detailed information on the algorithm.

The output through equation (3), f̂ , satisfies 0 � f̂ � 1 and cal-
culates the output values for every node. After obtaining the predict-
ive values, we represent them as scores with the following
normalization:

Score ið Þ ¼ 1

1þ e�ff̂ i�l
f̂
Þ=r

f̂
g (4)

where i denotes the indices of genes in the gene network. A higher
ScoreðiÞ of gene i in the gene network is considered as a candidate
gene with higher possibility of being associated with dementia.

4.3 Labeling
In the SSL algorithm, label information is necessary. In other words,
y in Equation (2) or (3) is necessary for the prediction process.
Labels for each layer can be set as follows: for the disease network,
the disease dementia is assigned with label ‘1’ and others as ‘0’. In
the gene network, the genes already known to be involved with

dementia are assigned with label ‘1’ and others as ‘0’. For the SNP
network, SNPs with a high association with dementia are set with
label ‘1’. The associated SNPs are selected based on the following
five statistical tests: chi-square test, Cochran Armitage trend test,
Hardy–Weinberg equilibrium test, Jonckheere–Terpstra test and lo-
gistic regression model. From the five tests, the lowest P-value is set
as the representative P-value for each SNP. SNPs with a P-value
below a threshold d are selected, and label ‘1’ is assigned. After set-
ting the label information in this manner, the top-ranked genes
through Equations (3) and (4) are recommended as candidate key
genes for dementia.

5 Experiments

5.1 Data
Table 1 summarizes the source and number of data used for the
experiments. The collected data can be separated into dementia-
specific data and public data. For dementia-specific data, we col-
lected human biospecimens from the chronic cerebrovascular
disease-oriented biobank in Korea. The biobank has been led by
Ajou University Hospital since 2016 and has secured differentiated
and advanced human resources for patients with vascular dementia
(VD), vascular depression and AD from numerous consortium hos-
pitals and mental health welfare centers. Thus, clinical data of
patients as well as human biospecimens (such as bloods, plasmas,
serums, fibroblasts, brain tissues and cerebrospinal fluids, etc.) are
being collected (http:// www. dementia- biobank. org). From the col-
lected data, patients’ genotypes for 827 783 SNPs were obtained
through genotyping using the KoreanChip. The KoreanChip is an
SNP microarray chip containing approximately 830000 SNPs devel-
oped and produced by the Korean National Institute of Health. It is
an optimized chip for genome research of the Korean population
(Moon et al., 2019). The third row in Table 1 summarizes the public
data used in the experiment. The names of diseases that constitute
the disease network were collected from Medical Subject Headings
(MeSH) and were standardized. The disease–gene (protein) relation

Fig. 2. Representation of the multi-layered network as a matrix. The constructed SNP-gene-disease network is represented by a huge matrix that contains both intra-relation

and inter-relation
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information for intra-relation for disease network and inter-relation
for disease and gene network was collected from PharmDB.
PharmDB extracts information on relations between disease, drug
and protein from multiple databases, such as the comparative toxi-
cogenomics database (CTD), genetic association database (GAD),
online Mendelian inheritance in man (OMIM) and pharmacogen-
omics knowledge base (PharmGKB) (Lee et al., 2015). Information
on gene and PPI for the gene network was collected from STRING
as shown in Section 3.2. SNP and gene–SNP relation information
were collected from dbSNP, which is managed by the National
Center for Biotechnology (NCBI). About 400 million SNP related
data materials are stored in dbSNP and provide information on reg-
istered SNPs in which a unique rs number is assigned to each.

5.2 Patient group definition
Information on 186 patients collected from the chronic cerebrovas-
cular disease-oriented biobank is classified based on pathology. In
the study, we focused on AD and VD, which are the most common
diseases among various types of dementia. Thus, the patients diag-
nosed with normal condition or mild cognitive impairment (MCI)
were defined as the control group. Patients with AD, VD, and simul-
taneous AD and VD pathologies are defined as three separate types
of case group. Table 2 shows the statistics of patient data by differ-
ent pathologies. The sixth column of Table 2 is mini-mental state
exam (MMSE) score which is a test method to evaluate cognitive
functions and screening dementia. From a total score of 30, a lower
score indicates higher severity in cognitive impairment (Folstein
et al., 1975).

5.3 Results for the construction of SNP-gene-disease

multi-layered network
From the collected data, three types of dementia-specific multi-lay-
ered networks were constructed based on different patient groups.
For the purpose of convenience, we term each network as ADN,
VDN and ADVDN. For all three types of patient groups, a two-
layered network of diseases and genes were initially constructed
using public data. Subsequently, the SNP network, constructed with
genome information, was connected to the gene network through
the proposed method.

For the disease network, the weighted edge has values based on
the number of related genes (proteins) shared between diseases. For
gene and SNP networks, the weighted edge takes values with a com-
bined score computed from the STRING database and converted
value from SNP–SNP interaction, respectively. The inter-relation
edges indicate the existence of a relation with binary values 1 or 0.
For the SNP network, only the SNPs registered in the dbSNP were
extracted and used for analysis from a total of 827 783 SNP geno-
typing results. Table 3 summarizes the results of the constructed
multi-layered network.

The label setting for each layer in the multi-layered network is as
follows: In the case of AD group, for example, the label of AD is set
to 1 in the disease network, label of AD-related genes is set to 1 in
the gene network, and the rest of diseases and genes are set to 0. In
the SNP network, SNPs that are statistically significant through
GWAS (P-value < 0.001, where d¼0.001) are set with a label of 1,
while the rest are set as 0. Figure 3 shows the process of selecting the
labeled SNP for the AD group with the Manhattan plot. In the

figure, 2532 SNPs above the red line have P-values less than 0.001,
and thus are set with label 1. This corresponds to 1.95% of the total
SNPs. Table 4 shows the number of labels and their ratios for each
of the patient groups.

5.4 Performance comparison
The performance of the proposed dementia-specific three-layered
network was compared with that of the gene-disease two-layered
network without the SNP network. This was conducted to measure
the effect of the genome information of dementia patients on pre-
dictive performance. The experiment was repeated 100 times with
10-fold cross-validation for the entire gene set. Gene scoring per-
formance was measured by the area under the receiver operating
characteristic curve (AUC). Figure 4 summarizes the results. In the
AD group, additional connection to the SNP network improved
the average AUC by 18% from 0.7750 to 0.9152 with stronger sta-
bility from the standard deviation perspective. However, for the
VD group, the increase in the average AUC value was relatively
lower although the stability improved. The AD&VD group exhib-
ited an increase in the average AUC by 16% with improvements in
stability by 69%.

Pathologically, over 70% of the pathogenesis factors for AD are
known as genetic. On the other hand, VD is caused by external fac-
tors rather than genetic factors in which damage in brain tissues is
due to cerebrovascular diseases. The proposed method searches for
genes that cause dementia, and thus the aforementioned result can
be considered as reasonable. The AD&VD group indicated a com-
promised result between AD and VD because it contained a mixture
of both genetic and non-genetic factors.

5.5 Results for dementia-related key gene identification
Figure 5 depicts the results of key gene identification by applying the
proposed method to AD. It shows the sorted scores with a curve and
the highlighted part presents genes that are ranked in the top 5%
out of 18 376 genes. In the figure, the gray nodes indicate genes that
are already known to be related to AD, the green nodes indicate
genes that are yet unknown, and the red nodes indicate candidate
key genes that are newly recommended through the proposed
method. Genes that are placed higher in the rank indicate a higher

Table 1. Data description for experiments

Data sources Number of data

Patient genome information Chronic cerebrovascular disease-oriented biobank 827 783 SNPs of 186 patients

Disease MeSH (http://www.nlm.nih.gov/mesh) 4798 diseases

Gene (protein) STRING (version 10.5) (http://string-db.org) 20 457 genes (proteins)

SNP dbSNP (http://www.ncbi.nlm.nih.gov/SNP) 381,785,470 SNPs

Disease–gene relation PharmDB (http://www.pharmdb.org) 153 118 relations between 2727 diseases and 23 022 proteins

Gene-SNP relation dbSNP (http://www.ncbi.nlm.nih.gov/SNP) 333 845 887 relations between 817 918 genes and 312 846 021 SNPs

Table 2. Statistics of patient data by pathologies

Pathology Number of patients Avg. age Avg. MMSE

score
Total Female Male

Normal/

MCI (control)

50 34 16 70.06 26.35

Alzheimer disease

(case 1)

34 22 12 70.25 20.5

Vascular dementia

(case 2)

42 29 13 72.63 22.28

AD&VD (case 3) 32 17 15 75.28 20.81

Others 26 16 10 72.23 23.08

Omission 2 1 1 71.5 24

Total 186 119 67 71.99 22.84
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possibility of being a candidate key gene. While most of the top-
ranked genes belong to already known genes, new and unknown
genes were still observed. These genes were termed as candidate key
genes because they were not yet sufficiently tested clinically or tested
in biological experiments. The possible verification in computation-
al biology prior to biological or clinical experiments on candidate
key genes is by retrieving literature. In other words, we can search
for literature on the results of previous studies showing the same
opinions on candidate genes through text mining and retrieval.
While some of the candidate key genes were not registered in the
public database, the association with AD was verified in the
PubMed literature. For example, such genes are highlighted in red
and marked with superscripts (a) to (d) in Figure 5. Clinical or

biological implications extracted from the literature are as follows.
Furthermore, Table 5 shows more candidate genes including four
genes with PMIDs.

• MYRIP(a): The study indicated that transmembrane protein 59

(TMEM59) is an important factor contributing to AD based on

mouse neural stem cell differentiation. Furthermore, myosin

VIIA and Rab interacting protein (MYRIP) directly regulates

TMEM59 in the gene regulatory network (Zhang et al., 2011).

Additionally, MYRIP is known to be involved with impaired in-

sulin exocytosis, which is one of the pathogenesis of AD (Waselle

et al., 2003).

Table 3. Result of SNP-gene-disease multi-layered network construction

(a) Intra-layer relationships

Number of nodes Number of edges Network density

Disease network 2727 1 334 312 17.94%

Gene network 18 376 10 547 626 2.95%

SNP networks ADN 129 771 283 954 0.0017%

VDN 152 358 388 726 0.0017%

ADVDN 47 449 72 320 0.0032%

(b) Inter-layer relationships

Number of relations

Disease-gene 84 413 relations between 2702 diseases and 9023 genes

Gene-SNP ADN 59 004 relations between 11 412 genes and 41 268 SNPs

VDN 69 912 relations between 12 133 genes and 42 906 SNPs

ADVDN 21 498 relations between 6991 genes and 20 906 SNPs

Fig. 3. Manhattan plot for representative P values of SNPs in the AD group. For the labels in SNP network, significant SNPs are selected by statistical tests. For the experiment

on the AD group, threshold d was set to 0.001, in which 1052 SNPs were set as labels

Table 4. Label setting for SNP-gene-disease multi-layered networks

ADN VDN ADVDN

Disease 1 (Alzheimer disease) 1 (Vascular dementia) 2 (AD&VD simultaneously)

Gene (disease related) 1052 out of 18 376 genes (5.56%) 31 out of 18 376 genes (0.16%) 1056 out of 18 376 genes (5.58%)

SNP (significant SNPs) 2532 out of 129 771 SNPs (1.95%) 2795 out of 152 358 SNPs (1.83%) 851 out of 47 449 SNPs (1.79%)
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• DDR1(b): In the study, the authors detected that discoidin do-

main receptor tyrosine kinase 1 (DDR1) and DDR2 knockdown

reduce the levels of a-synuclein, tau, and b-amyloid and prevent

cell loss in vivo and in vitro. They suggested that DDR1 and

DDR2 inhibition is a potential target to clear neurotoxic proteins

and reduce inflammation in neurodegeneration (Hebron

et al., 2017).
• UDT19(c): Three differential “signature” genes, including nudix

hydrolase 19 (NUDT19), were selected for specifying the early

stage, seven for the late stage, and five were common to both

groups of AD. The study suggested that these genes are potential

biomarkers for the early and late stages of AD-like neurodegen-

eration (Arisi et al., 2011).
• ECSIT(d): The study indicated an evolutionarily conserved signal-

ing intermediate in Toll pathways (ECSIT) as a molecular link

between oxidative stress, inflammation and mitochondrial dys-

function in AD based on the analysis of AD-associated protein

interaction network (Soler-López et al., 2011, 2012).

The same procedure was applied to the networks of VD and
AD&VD groups. In the case of VD, the number of related genes is
very low, and thus most of the genes are identified as unknown

genes. Among them, the priority of candidate key genes is derived
based on the ranking of the scores. For the AD&VD group, the
results were similar to those of the AD group albeit with different

genes for recommendation. Readers can refer to the Supplementary
File for more detailed information on the results.

6 Conclusions

With the emergence of a worldwide aging society, the population of
people aged 65 and over is projected to increase up to 1.5 billion by

Fig. 4. Performance comparison with inclusion of the SNP Network. When the SNP network was connected to the gene network through the proposed method, the prediction

performances were distinctly improved for the AD group and AD&VD group. Furthermore, the standard deviation of performances for all three groups were reduced remark-

ably, exhibiting better stability

Fig. 5. Results of key gene identification for AD. The proposed method provides scores for every gene and recommends candidate key genes based on the rank of genes where

associations with AD are yet unknown. Some candidate genes were verified from PubMed literature reviews that present the possibility of affecting AD. The remaining genes

are left as possible candidate genes

Dementia key gene identification with multi-layered SNP-gene-disease network i837

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i831/6055939 by A-Jou U

niv / M
edical Info user on 08 M

ay 2025



2050. As the population of older individuals surges, the prevalence
rate of dementia is estimated at approximately 5–10% worldwide,
and the dementia population (which was approximately 46.8 mil-
lion in 2015) is expected to triple by 2050 and reach 131.5 million
(United Nations, 2019). In addition, the social and economic costs
associated with dementia are estimated at 1 trillion dollars in 2019
and are expected to double by 2030 (Alzheimer’s Disease
International, 2019). Therefore, the necessity for early detection and
prevention of dementia is increasingly highlighted along with
increasing investments in R&D for dementia at the national level.
Hence, it is undoubtedly important to overcome dementia, and
methods to determine key genes (which are significantly involved in
dementia) are receiving significant attention recently.

In this study, we proposed a method to construct a three-layered
network of SNP-gene-disease and recommending key genes for de-
mentia using a machine learning algorithm. The proposed method
constructs a layered network by combining public- and disease-
specific genomic data. The latter type of data was collected from the
chronic cerebrovascular disease-oriented biobank consisting of data
from dementia patient and control groups. The approach to con-
struct a multi-layered network reflects the effect of mutual interac-
tions between genes and SNPs on diseases. From an algorithmic
perspective, genes that are already known to be related to dementia
and significant SNPs from genotyping information are set as labels,
and candidate key genes are ranked via applying a SSL algorithm.
To reduce the high computational complexity that results from a
huge matrix during the learning process, we employed a method
proposed by Kim et al. (2019) that utilized the layered structure of
the constructed network. The experimental results demonstrated the
outstanding performance of the proposed method including SNP in-
formation when compared to that without SNP information.
Furthermore, a portion of the candidate key genes, as recommended
by the proposed method, was verified by finding relations to demen-
tia through text mining and retrieval of PubMed literature. The
remaining candidate key genes are left as possibly related genes that
should be preferentially examined among numerous genes.

The proposed method is “disease-specific” key gene identifier. In
this study, it is a dementia-specific key gene identifier since it was
applied to the collected data targeting dementia. However, it is flex-
ible in terms of application to other diseases if data are available.
Additionally, if personal genomic information is directly plugged
into the hierarchical network instead of patients’ group information,
then it can be readily extended to “personalized” key gene identifier.
Thus, the proposed method can be used as a tool for precision medi-
cine. Furthermore, it has the potential to identify novel SNPs if the
target is simply set to SNPs instead of genes.

There are some limitations of this study. The resulting network
may be biased to the current dataset which has been collected from
the chronic cerebrovascular disease-oriented biobank in Korea. To
resolve the generalization issue, diverse public data such as those
from Alzheimer’s Disease Neuroimaging Initiative (ADNI) can be

additionally incorporated into our approach. And further, a demo-
graphically match health cohort can be used to avoid the concern.
These will be dealt in our future work.
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Soler-López,M. et al. (2012) Towards Alzheimer’s root cause: ECSIT as an

integrating hub between oxidative stress, inflammation and mitochondrial

dysfunction: hypothetical role of the adapter protein ECSIT in familial and

sporadic Alzheimer’s disease pathogenesis. Bioessays, 34, 532–541.

Szklarczyk,D. et al. (2017) The STRING database in 2017: quality-controlled

protein–protein association networks, made broadly accessible. Nucleic

Acids Res., 45, D362–D368.

Tsuda,K. et al. (2005) Fast protein classification with multiple networks.

Bioinformatics, 21, ii59–ii65.

United Nations, D.o.E.a.S.A. (2019) Population Division. World

Population Ageing 2019: Highlights (ST/ESA/SER.A/430). United Nations,

New York.

van Dam,S. et al. (2018) Gene co-expression analysis for functional classifica-

tion and gene–disease predictions. Briefings Bioinform., 19, 575–592.

Venter,J.C. et al. (2001) The sequence of the human genome. Science,

291, 1304–1351.

Waselle,L. et al. (2003) Involvement of the Rab27 binding protein

Slac2c/MyRIP in insulin exocytosis.Mol. Biol. Cell, 14, 4103–4113.

Zhang,L. et al. (2011) Identifying Tmem59 related gene regulatory network of

mouse neural stem cell from a compendium of expression profiles. BMC

Syst. Biol., 5, 152.

Zhu,X. and Goldberg,A.B. (2009) Introduction to semi-supervised learning.

Synth. Lect. Artif. Intell. Mach. Learn., 3, 1–130.

Zhu,X. et al. (2005) Doctoral thesis: Carnegie Mellon University, Language

Technologies Institute, School of Computer Science. Semi-supervised learning

with graphs.

Dementia key gene identification with multi-layered SNP-gene-disease network i839

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i831/6055939 by A-Jou U

niv / M
edical Info user on 08 M

ay 2025


	l

