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Abstract

Background: The study on disease-disease association has been increasingly viewed and analyzed as a network, in
which the connections between diseases are configured using the source information on interactome maps of
biomolecules such as genes, proteins, metabolites, etc. Although abundance in source information leads to tighter
connections between diseases in the network, for a certain group of diseases, such as metabolic diseases, the
connections do not occur much due to insufficient source information; a large proportion of their associated genes
are still unknown. One way to circumvent the difficulties in the lack of source information is to integrate available
external information by using one of up-to-date integration or fusion methods. However, if one wants a disease
network placing huge emphasis on the original source of data but still utilizing external sources only to complement it,
integration may not be pertinent. Interpretation on the integrated network would be ambiguous: meanings conferred
on edges would be vague due to fused information.

Methods: In this study, we propose a network based algorithm that complements the original network by utilizing
external information while preserving the network’s originality. The proposed algorithm links the disconnected node to
the disease network by using complementary information from external data source through four steps: anchoring,
connecting, scoring, and stopping.

Results: When applied to the network of metabolic diseases that is sourced from protein-protein interaction data, the
proposed algorithm recovered connections by 97%, and improved the AUC performance up to 0.71 (lifted from 0.55)
by using the external information outsourced from text mining results on PubMed comorbidity literatures.
Experimental results also show that the proposed algorithm is robust to noisy external information.

Conclusion: This research has novelty in which the proposed algorithm preserves the network’s originality, but at the
same time, complements it by utilizing external information. Furthermore it can be utilized for original association
recovery and novel association discovery for disease network.
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Background
The amount of information on disease-disease associ-
ation has been ever increasing over the last decade and
the source of information also has been diversified from
multi-levels of genomic data to clinical data, such as
copy number alteration at the genomic level, miRNA
expression or DNA methylation at the epigenomic level,
protein-protein interaction at the proteomic level, disease
comorbidity at the clinical level, and etc. [1–4].
One of the most effective ways to describe disease-

disease association is by constructing a disease network,
which consists of nodes and edges, representing diseases
and disease-disease relations, respectively [5, 6]. In a dis-
ease network, the concept of disease-disease association
(i.e., edges) varies depending on the source of informa-
tion that the network utilizes. Many researches have
been conducted using various sources of data. In Goh et
al. [7], the authors created a disease network based on
gene-disease associations by connecting diseases that are
associated with the same genes. It had further developed
in Zhou et al. [8] which constructed a diseases network
by using disease-gene information and disease-symptom
information. Lee et al. [9] constructed a network in
which two diseases are linked if mutated enzymes asso-
ciated with them catalyze adjacent metabolic reactions.
While these researches are based on genomic data, there
are also other researches that utilize clinical data for as-
sociated disease concerning patient records. In Hidalgo
et al. [10], authors constructed a disease network, which
reflects information of two co-occurred diseases, by
utilizing clinical records of 13,039,018 patients. The au-
thors utilized prevalence of two diseases co-occurring in a
patient for edges. On the other hand, Žitnik et al. [11] is a
research that uses both genomic and clinical data. In
Žitnik et al. [11], the authors integrated data on disease-
gene association, disease ontology, drugs and genes so that
they could utilized such information to deduce disease-
disease associations. So far, we see that most of these re-
searches only utilize a single source of data to find
disease-disease associations. On the other hand, if diverse
and heterogeneous sources of data are available, there

also have been network-wise approaches to integrate
multiple disease networks for inferring associations
between diseases [3, 12–15].
However, if one wants a disease network placing huge

emphasis on a particular source of data but still utilizing
other sources only to complement the original source,
which researches above can be applied to it? For example,
if we were to target drug discovery or to reposition by using
disease network, the one constructed with protein informa-
tion would be more preferred [16, 17]. On the other hand,
if physicians were to treat a patient, they would prefer a dis-
ease network constructed with comorbidity information
based on prevalence of diseases. If, however, there are losses
or deficiencies of information in each original source, what
would we do? In such a case, disease-disease associations
cannot be defined, resulting in a disconnected network. See
Fig. 1(a). If external source of data is usable, we could inte-
grate the original network and the external network in a
network-wise fashion by using one of up-to002Ddate inte-
gration methods [3, 12, 14, 18]. But interpretation on the
results would be ambiguous: meanings conferred on edges
would be vague in the resulting disease network.
This motivates the present research. In this paper, we

propose an algorithm that preserves the network’s original-
ity, but at the same time, complements it by utilizing exter-
nal information. We denote the proposed algorithm as
CLASH which abbreviates complementary linkage with an-
choring and scoring for heterogeneous data. An original
disease network is constructed from PPI information as in
Goh et al. [7] and Zhou et al. [8]. And then, CLASH is ap-
plied to the network in order to link disconnected nodes to
the network through newly found edges using external in-
formation. In the complementing process, clinical comor-
bidity information is used as external source of information.
The resulting network is called as a complemented disease
network. See Fig. 1(b).
The remainder of the paper is organized as follows.

Section 2 introduces CLASH in length. Section 3 provides
the experimental results on validity and utility of CLASH
by applying it to metabolic disease group. Section 4 pre-
sents conclusion.

Fig. 1 Proposed Method: a original network with disconnected nodes, and b complemented network that links the disconnected nodes to the
connected network through newly found edges using external information
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Complementary linkage with anchoring and
scoring for heterogeneous data
Disease network is a graph, G = (V,W), that describes
connection between diseases with nodes and edges. In a
disease network, a node denotes a disease and an edge de-
notes disease-disease association. Here, disease-disease as-
sociation is a value obtained by calculating similarity
between two diseases based on their shared genes (or pro-
teins) and co-occurrence information through clinical tri-
als. On the graph, similarity between two diseases are
assigned with a weight value on the edge and higher of its
value implies higher association between two diseases. In
our study, the disease network is constructed using shared
proteins: a disease vector has n-dimensional protein vec-
tor, and the similarity between two diseases are calculated
with cosine similarity between disease vectors. If all dis-
ease gets connected to more than one edge, the disease
network becomes a connected graph. On the other hand,
if a disease is left to be disconnected from the network
due to lack of disease-disease association with other dis-
eases, it becomes impossible to deduce any inference
about the disease from the network.
To circumvent the difficulty, we propose an algorithm

for linking the disconnected node to the disease network
by using complementary information from external data
source, CLASH. The method is composed of four steps,
anchoring, connecting, scoring and stopping. Figure 2 pre-
sents each step, beginning with a graph of eight nodes of
which five are connected and three are disconnected.

Anchoring
At the anchoring step, disconnected nodes are initially
connected to the network (i.e., disconnected nodes drop
their anchor to the connected graph). During the process,
disconnected nodes must select a node to drop their

anchor by utilizing possible external data source. Here, ex-
ternal data source is information unsuitable or less pre-
ferred, for purpose or usage of the proposed network.
Thus, it is information that is not mainly used for con-
structing the network, but can be utilized to supplement
the network. Figure 2(b) describes an anchoring step of a
disconnected node, v6, to the connected graph of five
nodes. Based on external data source, the fact that v6 is re-
lated to {v1, v2, v3} allows us to initially connect v6 to associ-
ated nodes. These associated nodes are defined as
candidate nodes.

Scoring
The scoring step allows disconnected nodes to select
connectable nodes from anchored nodes through scor-
ing. In this paper, we utilize the Semi-Supervised Learn-
ing (SSL) algorithm. The way it works is that given a
connected graph, the SSL computes f-score for each la-
beled node. See Appendix. In the present study, the label
of disconnected node is set to ‘1’, and ‘0’s for others. The
f-score increases with stronger connectivity of associated
edges and the number of edges [19–21]. In addition,
the higher the f-score implies the higher similarity to
the labeled node. Figure 2(c) shows the result of scoring
step of a disconnected node, v6, on candidate nodes, v1,
v2, v3. The f-scores for given nodes are {0.9, 0.8, 0.6},
respectively.

Connecting
At the connecting step, disconnected nodes connect to
the graph based on scoring results. The order of connec-
tion is determined based on the f-scores on candidate
nodes. Higher the f-score means higher the priority in
the order of connection. (If the f-scores of candidate
nodes are the same, then they are connected to the

Fig. 2 Schematic description of CLASH Algorithm
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graph with the same priority.) Newly formed edges
through connection can cause disturbances (sometimes
severe disturbances) on the network. Because severe dis-
turbances could cause the original network to lose its
property, there needs to be a standard that could deter-
mine the connection with certainty. In this research, we
provide such standard due to its principle of preserving
network properties and utilizing external data source.
The preservation of network’s property can be measured
through performance of the network whenever a new
edge is formed between a disconnected node and a can-
didate node. Performance of network is measured on
validation nodes, which excludes disconnected nodes
and candidate nodes. Under the condition that the net-
work’s performance stays within certain range (denoted by
ϵ in (2) in Fig. 3), we then allow additional edges to be
formed. If a change in network performance after connec-
tion is trivial, it implies that a newly connected node does
not incur unexpected perturbation in the original net-
work, thus preserving the original property of network.
Figure 2(d) shows a candidate node, v1, connects to v6 due
to its higher f-score compared to other candidate nodes
{v2, v3}. At this point, the validation nodes are {v4, v5}. The
connection is finalized since the change in additional/
pre-post performance of the edge is within a certain
range. After the first connection, we proceed to another
candidate node, v2, which has the second largest f-score.

Figure 2(e) shows the disconnected node, v6, making final
connections to two of the candidate nodes, {v1, v2}, out of
three candidate nodes that had been anchored.

Stopping
The proposed algorithm stops when there are no more
disconnected nodes, or external data or the performance
of the network decreases. Figure 2(f ) shows a network in
which all the disconnected nodes, v6, v7, v8, are con-
nected through previous steps.
The pseudo-code for the proposed algorithm is pre-

sented in Fig. 3.

Experiments
Data
The proposed algorithm was applied to the metabolic
disease group. Demographically, metabolic diseases are
widespread among people and show increasing rate in
recent years. In up-to-date genome researches or mo-
lecular biology, however, it is difficult to trace disease-
protein associations for metabolic diseases. This means
that in researches that construct diseases network based
on genome or protein information, it is also difficult to
trace disease-disease associations for metabolic diseases.
For example, in Goh et al. [7], it shows that there are
almost no connections between metabolic disease nodes
in human disease network, which is significantly

Fig. 3 Pseudo Code of CLASH Algorithm
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different from nodes for cancer that have dense connec-
tions in the network. Thus, we chose metabolic diseases
to construct a denser disease network by supplementing
connections through CLASH. To construct a metabolic
disease network, a list of diseases was obtained from Med-
ical Subject Headings (MeSH) of the National Library of
Medicine [22]. When considering up to the second level
of the taxonomy, there are 302 descriptors for metabolic
diseases out of 27,149 listed diseases. For the nodes, we
acquired 53,430 data points on disease-protein associa-
tions. From the obtained set of data, we have selected and
utilized 181 metabolic diseases and 15,281 proteins that
were eligible to construct the disease network. The edge
weights were calculated with cosine similarity between
15,281 dimensional disease vectors. We denote this net-
work as the original disease network. For external data
sources that could be used to complement the original
disease network, we used comorbidity information re-
ported on clinical literatures. Comorbidity addresses the
concomitant occurrence of different medical conditions or
diseases, usually complex and often chronic, in the same
patient [23, 24]. In order to acquire external data source,
text mining was conducted on 1,000,254 medical litera-
tures from PubMed. From this point onward, we define
complemented disease network as the resulting disease

network complemented with comorbidity information
through CLASH. Table 1 summarizes the source and type
of data used in our experiment.

Experimental settings
First, we have performed verification tests to see how
the proposed algorithm, CLASH, complements the net-
work. To carry out the tests, we gave artificial damages
to the original network, allowing CLASH to recover the
damaged network and to construct the complemented
disease network. More specifically, we randomly chose
and deleted 20, 40, 60 and 80 %, of the edges from the
original diseases network and specified each resulting
network as ‘%-damaged original network’. (For our con-
venience, ‘0 %-damaged original network’ is denoted as
the reference network.) After constructing the comple-
mented disease networks from each levels of damage, we
compared them to each of the %-damaged original net-
works. Second, the overall performances would increase
if we add further information from extra data. However,
this would only happen if the extra source of data is useful
to complement the original source of data. Therefore, to
further clarify the validity of CLASH, we performed
additional experiments comparing effects of noise data
when employed to complement the %-damaged original

Table 1 Data sources for metabolic diseases, proteins, disease-protein associations, comorbidity

Disease Original source data External source data

Protein Disease-Protein association Comorbidity literature

Number of data 181 out of 302 15,281 out of 30,634 53,430 relations 6518 out of 1,001,254

Sources Medical subject headings 2014 Comparative Toxicogenomics Database (CTD)
Genetic Association Database (GAD)
Online Mendelian Inheritance in Man (OMIM)
The Pharmacogenomics Knowledge Base (PharmGKB)
Therapeutic Target Database (TTD)

PubMed (05-01-31 ~ 15-03-31)

Fig. 4 Results for Complementing Ability of CLASH: a shows that the proportion of edges have been recovered by 18 %, on average. b shows
that CLASH improves AUC performance up to 0.79. The p-values for statistical tests for pairwise comparison between %-damaged original
network and complemented network are 0.0002, 0.0001, 0.0002 and 0.000, respectively. On the other hand, CLASH is robust to noise: the noisy
networks incurred insignificant degradation or no change in performance to %-damaged networks, preserving the original information
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network. They are denoted as noisy networks. To meas-
ure the network’s performances, we used SSL algorithm
on prediction problems on possibly co-occurring diseases
in the case when there is an outbreak of a certain disease
[19]. Leave-one-out validation method is used [25]. The
f-scores for all diseases are calculated by (1) except for
one target disease. Then, the ROC was obtained by
comparing f-scores and PubMed Literatures: presence
(‘1’) or absence (‘0’) of PubMed literatures is used as a
standard for disease association. For 181 diseases, the ROC

was similarly calculated. The whole experiment was re-
peated 10 times.

Results and Disscussion
Results for validity of CLASH
Figure 4(a) presents network density that depicts pro-
portion of edges, which had been recovered through
CLASH. It shows that, regardless of the degree of damages,
by utilizing external data sources, the proportion of edges
have been recovered by 18 %, on average. In case of 20 %-

Fig. 5 Utility of CLASH by demonstrating the process for the malabsorption syndrome: CLASH algorithm complements the network with four
recovered edges and four newly found ones. Therefore, malabsorption syndrome extends its associations with more diseases, hyperhomocysteinemia,
hypoglycemia, osteomalacia and insulin resistance, apart from the originally connected four diseases. Single solid lines refer to extended edges and
double lines refer to original edges. Also notations ‘†’, ‘*’ and ‘**’ denotes associated diseases via PPI, PubMed and multiple paths involving more than
one edge, respectively
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damaged network, 97 % of edges were recovered when
comparing with those of reference network (97 % = (0.130/
0.134) × 100 %.) Also, it is interesting to see that it is
possible to recover severely damaged edges that had
been deleted by 80 %. Fig. 4(b) shows comparisons of
AUC performances of damaged network and comple-
mented network. From the bar chart on 80 %-damaged
network, we can see that CLASH improves the perform-
ance up to 0.71 (lifted from 0.55). Considering that the
performance of reference network was 0.69, it can be in-
ferred that CLASH has led to improvement in AUC even
in the most severely damaged network. For other dam-
aged networks, the comparisons can be similarly inter-
preted. On the other hand, the noisy networks incurred
insignificant degradation or no change in performance
to %-damaged networks. (The amount of noisy edges
corresponds to those of complemented edges for %-dam-
aged networks.) This shows that CLASH is robust to
noisy external source data and preserves the original
information.

Result for utility of CLASH
In this section, we show utility of CLASH by demon-
strating its process and typical results for a case disease.
Malabsorption syndrome was selected as a target disease
out of 181 metabolic diseases. Malabsorption syndrome
refers to a wide variety of frequent and uncommon dis-
orders of the process of alimentation in which the intes-
tine’s ability to absorb certain nutrients, such as vitamin
B12 and iron, into the bloodstream is negatively affected
[26, 27]. Fig. 5 presents step-by-step process of CLASH
for the target disease. Figure 5(a) shows a reference
network of 13 disease nodes which simplifies the whole

network of 181 diseases. In the figure, malabsorption syn-
drome (node 1) has four connections with celiac disease,
glucose intolerance, metabolic disease X and diabetes mel-
litus (node 2, 5, 9, 11, in due order.) The four edges were
purposely deleted to show if CLASH successfully recovers
the original ones and further compliments the network
with new edges from external knowledge found from
PubMed comorbidity literatures. This is shown in Fig. 5(b),
the original network. Figure 5(c) briefly describes an-
choring, scoring and connecting: firstly, the node of mal-
absorption syndrome anchors at 10 nodes (See anchored
diseases [28–37]) which includes the four nodes of the ori-
ginally associated (node 2, 5, 9, 11) and six nodes of the
newly found (node 3, 4, 6, 7, 8, 10). Among them, eight
nodes are finally connected which have the highest values
of f-score after dropping out two nodes with the lowest
scores, node 6 and 7. Figure 5(d) presents the comple-
mented network of four recovered edges and four
newly found ones. Solid single line in the network refers
to the former and double-line denotes the latter. Conse-
quently, we see that malabsorption syndrome extends its
associations with more diseases, hyperhomocysteinemia,
hypoglycemia, osteomalacia and insulin resistance (node 3,
4, 8, 10), apart from the originally connected four diseases
shown in Fig. 5(a).
To validate the utility of newly found edges, we per-

formed disease scoring on reference network in Fig. 5(a)
and complemented network in Fig. 5(d), and then com-
pared the top tier ranked up to 10th associated diseases
from each network. Figure 6 presents a comparison of
disease list obtained from results of reference network
and complemented network. Figure 6(b) shows that ce-
liac disease, glucose intolerance, metabolic disease X and

Fig. 6 Top tier ranked up to 10th associated diseases with malabsorption syndrome: Notations ‘†’, ‘*’ and ‘**’ are identical to those in Fig. 5
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Table 2 Top tier ranked up to 10th associated diseases

Target Disease Associated via Reference Network Associated via Complemented Network

Celiac Disease Diabetes Mellitus
Metabolic Syndrome X
Glucose Intolerance
Hyperinsulinism
Hyperlipidemias

Calcinosis
Dyslipidemias
Hyperhomocysteinemia
Anemia, Iron-Deficiency
Homochromatosis

Diabetes Mellitus†

Metabolic Syndrome X†

Glucose Intolerance†

Hyperinsulinism†

Congentital Hyperinsulinism**

Malabsorption Syndromes*
Hypoglycemia**
Dyslipidemais†

Hyperglycemia**
Hyperhomocysteinemia†

Lactose Intolerance Diabetes Mellitus
Metabolic Syndrome X
Glucose Intolerance
Celiac Disease
Dyslipidemias

Hyperinsulinism
Amyotrophic Lateral
Sclerosis
Insulin Resistance
Hyperlipidemias
Glucose Metabolism
Disorders

Mucolipidoses*
Celiac Disease*
Glycogen Storage Disease*
Metabolism, Inborn Errors*
Malabsorption Syndromes*

Diabetes Mellitus†

Hypoglycemia**
Hyperinsulinism**
Glucose Intolerance**
Hypokalemia*

Hypophosphatasia Metabolic Syndrome X
Diabetes Mellitus
Glucose Intolerance
Metabolic Diseases
Dyslipidemias

Amyotrophic Lateral
Sclerosis
Diabetes, Gestational
Hyperlipidemias
Hyperinsulinism
Calcinosis

Acidosis, Renal Tubular*
Zellweger Syndrome*
Celiac Disease*
Peroxisomal Disorders**
Refsum Disease*

Metabolism, Inborn Errors*
Adrenoleukodystrophy*
Homocystinuria**
Diabetes Mellitus†

Phenylketonurias*

Refsum Disease Zellweger Syndrome
Peroxisomal Disorders
Chondrodysplasia Punctata,
Rhizomelic
Adrenoleukodystrophy
Homocystinuria

Porphyrias
Protoporphyria,
Erythropoietic
Hyperhomocysteinemia
Diabetic Ketoacidosis
Lipid Metabolism, Inborn
Errors

Neuronal Ceroid-
Lipofuscinoses*
Lipidoses*
Peroxisomal Disorders†

Zellweger Syndrome†

Diabetes Mellitus*

Leigh Disease*
Glycogen Storage Disease*
Adrenoleukodystrophy†

Malabsorption Syndromes*
Glucose Intolerance**

Fanconi
Syndrome

Hypophosphatemia
Glycogen Storage Disease
Hypercalcemia
Glucose Intolerance
Metal Metabolism, Inborn
Errors

Osteomalacia
Xanthomatosis,
Cerebrotendinous
Diabetes Mellitus
Calcinosis
Metabolic Syndrome X

Celiac Disease*
Glycogen Storage Disease†

Diabetes Mellitus†

Carbohydrate Metabolism,
Inborn Errors*
Leigh Disease*

Diabetes, Gestational*
Glucose Intolerance†

Hyperinsulinism*
Hypoglycemia*
Congenital Hyperinsulinism**

Menkes Kinky Hair
Syndrome

N/A Congenital Disorders of
Glycosylation*
Hyperglycinemia, Nonketotic*
Zellweger Syndrome*
Peroxisomal Disorders**
Hepatolenticular
Degeneration*

Refsum Disease**
Acidosis, Lactic*
Albinism*
Mitochondrial Myopathies*
Adrenoleukodystrophy**

Pyruvate Carboxylase
Deficiency
Disease

N/A Acidosis, Renal Tubular*
Carbohydrate Metabolism,
Inborn Errors*
Hyperglycinemia, Nonketotic*
Maple Syrup Urine Disease*
Glycogen Storage Disease*

Amino Acid Metabolism,
Inborn Errors*
Renal Aminoacidurias**
Metabolism, Inborn Errors*
Acidosis, Lactic*
Pyruvate Metabolism, Inborn
Errors*

Rothmund-Thomson
Syndrome

N/A DNA Repair-Deficiency
Disorders*
Celiac Disease*
Metal Metabolism, Inborn
Errors**
Acidosis*
Xanthomatosis,
Cerebrotendinous**

Hypercalcemia*
Skin Diseases, Metabolic*
Amyloidosis, Familial*
Achlorhydria**
Osteomalacia**

Sphingolipidoses N/A Neuronal Ceroid-
Lipofuscinoses*
Lipidoses*
Carbohydrate Metabolism,
Inborn Errors*
Diabetes Mellitus*
Peroxisomal Disorders*

Zellweger Syndrome**
Glycogen Storage Disease*
Adrenoleukodystrophy*
Refsum Disease*
Glucose Intolerance**

Alkaptonuria N/A Carbohydrate Metabolism,
Inborn Errors*

Amino Acid Metabolism,
Inborn Errors*
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diabetes mellitus are highly ranked. If we compare these
diseases with those connected to malabsorption syndrome
in Fig. 5(d) (node 2, 5, 9, 11), we get an interesting result
in which all these diseases are also included in the disease
list. On the other hand, it is also notable that four diseases,
hyperhomocysteinemia, hypoglycemia, osteomalacia and
insulin resistance, that are associated with newly found
edges in Fig. 5 (node 3, 4, 8, 10) are included in the list as
well. From the results of Figs. 5 and 6, we see that CLASH
is able to preserve the originality of the disease network
built from PPI information, but at the same time, comple-
ments it by utilizing PubMed comorbidity literatures.
In a similar manner, an experiment has been carried out

on 181 diseases (Supplemental materials http://www.al-
phaminers.net.). Table 2 illustrates results for 10 diseases.
The first 5 diseases, similar to malabsorption syndrome,
are artificially disconnected diseases from the original
network of 181 diseases while the last 5 diseases are
real disconnected diseases that does not contain any
PPI information (not valid).
Through results from the experiment, we verified use-

fulness and effectiveness of CLASH, which uses both
original and external data source to find diseases that
could co-occur with target diseases.

Conclusion
The research proposes an algorithm, also known as
CLASH, which complements or strengthens connections
between diseases in a disease network. The proposed al-
gorithm is useful when the original disease network is
incomplete and when supplementary information on dis-
ease association is available. The verification process for
CLASH has been done by applying the algorithm on
metabolic diseases. The original disease network was
constructed based on PPI information. And through
CLASH, disconnected edges were complemented or
strengthened by supplemental information obtained
from PubMed comorbidity literatures. In the experiment
on validity, CLASH not only successfully recovered pur-
posely deleted edges but also improved their perfor-
mances: It showed full recovery of 20 % damaged edges
and an increase of AUC performance from 0.69 to 0.79.
In the experiment on utility, the research illustrates how
to utilize CLASH through the toy example: In the case
of malabsorption syndrome as the target disease, it

delineates the process of finding a list of diseases that
could co-occur with the target disease. Similar results
are also shown with other metabolic diseases.
This research has novelty in following aspects. CLASH

is a methodology that preserves the network’s originality,
but at the same time, complements it by utilizing ex-
ternal information. CLASH has different utility than
other methods that integrate multiple data sources in a
network-wise fashion. It puts more emphasis on one data
source than others: To complement disease-gene informa-
tion (from biology) with comorbidity information (from
medicines), or oppositely, to complement comorbidity in-
formation with disease-gene information. Examples of
former usage can be found in drug discovery/repositioning
in pharmacology while an example of latter usage is infer-
ring disease co-occurrence when practicing. Moreover,
these usages are topics for further researches.

Appendix
Graph-based Semi-Supervised Learning
Disease network is a graph, G = (V,W), that describes

connection between diseases with nodes and edges. In a
disease network, a node denotes a disease and an edge
denotes disease-disease association. Given a disease net-
work, graph-based Semi-Supervised Learning (SSL) is
employed to calculate the scores when a target diease is
given. In the present study, the target disease is labeled as
‘1’, and other diseasese are labeled as ‘0’ (unlabeled). With
this setting on a disease network, SSL provides the scores
for diseases, in terms of f-score. The algorithm is summa-
rized as follows, and more details can be found in [19–21].
In graph-based SSL, a connected graph G = (V,W) is

constructed where the nodes V represent the labeled
and unlabeled data points while the edges W reflect the
similarity between data points. In binary classification prob-
lem, given n(=nl + nu) data points from the sets of labeled

SL ¼ xi; ; yið Þnli¼1

� �
and unlabeled SU ¼ xj

� �n
j¼ nlþ1

n o
; the

labeled nodes are set to yl ∈ {−1, + 1}, while the unlabeled
nodes are set to zero (yu = 0). However, for scoring problem
in the proposed algorithm, the nl nodes are set to a unary
label yl ∈ {1} while the unlabeled nu nodes are set to zero
(yu = 0). Resulting the learning process is to assign
scores f u

T = (fnl + 1, …, fn)
T on nodes VU. The edges be-

tween the two nodes vi and vj. are measured by the
Gaussian function

Table 2 Top tier ranked up to 10th associated diseases (Continued)

Glycogen Storage Disease*
Zellweger Syndrome*
Metabolism, Inborn Errors*
Peroxisomal Disorders**

Refsum Disease*
Adrenoleukodystrophy**
Diabetes Mellitus*
Lipid Metabolism, Inborn
Errors*

Notations ‘†’, ‘*’ and ‘**’ are identical to those in Fig. 5
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wij ¼ exp−dist vi; vjð Þ=σ2 if ie j
0 otherwise

�

where i ~ j indicates that the two nodes are connected,
and the value of the similarity is represented by a matrix
W = {wij}. Then the label information can propagate
from labeled node vi to unlabeled node vj when the
value of wij is large, their outputs are lely to be close.
The algorithm will output an n-dimensional real-valued
vector f = [f l

T fu
T] = (f1,…, fl, fl + 1, …, fn = l + u)

T. There are
two assumptions: a loss function (fi should be close to
given label of yi in labeled nodes) and label smoothness
(overall, fi should not be too different from fi for the
neighboringes.hese assumptions are reflected in the
value of f by minimizing the following quadratic
function:

min
f

f −yð ÞT f −yð Þ þ μf TLf

where y ¼ y1; …; ynl ; 0; …; 0
h iT

and the matrix L,

which is known as the graph Laplacian matrix, is defined

as L =D −W where D = diag(di), di ¼
X
i

wij . The par-

ameter μ trades off loss and smoothness. Thus, the solu-
tion of this problem becomes

f ¼ I þ μLð Þ−1y
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